【題目】如圖,正△ABC 中,高線 ,點(diǎn) 從點(diǎn) 出發(fā),沿著 運(yùn)動到點(diǎn) 停止,以 為邊向左下方作正 ,連接 .

(1)求證: ;
(2)在點(diǎn)P的運(yùn)動過程中,當(dāng) 是等腰三角形時,求 的度數(shù);
(3)直接寫出在點(diǎn) P的運(yùn)動過程中, 的最小值.

【答案】
(1)

證明:∵ABC和PQC是正三角形,∴AC=BC,PC=QC,ACB=PCQ=60,

又∵ACP=60-BCP,BCP=60-BCP,∴ACP=BCP.

ACP和BCQ中,

,

ACPBCQ(SAS).


(2)

解:由(1)知,ACPBCQ,∴QBD=PAC=30

當(dāng)ΔBDQ 是等腰三角形時,

①若BQ=QD,,如圖1,則BDQ=30

圖1

②若BQ=BD,如圖2,則BDQ=75;

圖2

③若BD=DQ,如圖3,則BDQ=120.

圖3

答:BDQ的度數(shù)為30或75或120.


(3)


【解析】(3)解:如圖4,過點(diǎn)P作PMAB于點(diǎn)M,

圖4
BAD=30,PM=AP,即:AP=2PM,
∴AP+2PC=2PM+2PC=2(PM+PC),
∴當(dāng)AP+2PC最小時,即2PM+2PC最小,即PM+PC最小. ∴當(dāng)點(diǎn)P運(yùn)動到P、C、M在同一直線上時,PM+PC最小.
過點(diǎn)C作CNAB于點(diǎn)N,
當(dāng)點(diǎn)P運(yùn)動到CN與AD的交點(diǎn)處時,PM+PC最小,最小值為等邊三角形ABC的高CN=6,
∴AP+2PC的最小值=26=12.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和軸對稱-最短路線問題對題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,屬于中心對稱圖形的是(  )

A.銳角三角形B.直角三角形C.菱形D.對角互補(bǔ)的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,AB=ACADBC邊上的高,EAC中點(diǎn).

(1)如圖1,過點(diǎn)CCFABF點(diǎn),連接EF.若∠BAD=20°,求∠AFE的度數(shù);

(2)若M為線段BD上的動點(diǎn)(點(diǎn)M與點(diǎn)D不重合),過點(diǎn)CCNAMN點(diǎn),射線ENAB交于P點(diǎn).

①依題意將圖2補(bǔ)全;

②小宇通過觀察、實驗,提出猜想:在點(diǎn)M運(yùn)動的過程中,始終有∠APE=2∠MAD

小宇把這個猜想與同學(xué)們進(jìn)行討論,形成了證明該猜想的幾種想法:

想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD

想法2:設(shè)∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通過角度計算得∠APE=2α

想法3:在NE上取點(diǎn)Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……

請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1)有4張桌子,用第一種擺設(shè)方式,可以坐   人;用第二種擺設(shè)方式,可以坐   人;

2)有n張桌子,用第一種擺設(shè)方式可以坐   人;用第二種擺設(shè)方式,可以坐   人(用含有n的代數(shù)式表示);

3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, ,點(diǎn)P在邊 上,且滿足 .

(1)畫出點(diǎn)P的位置(尺規(guī)作圖,保留痕跡);
(2)①若 , ,則 的周長為;
②若 ,則 °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點(diǎn)M是x軸上的一個動點(diǎn),當(dāng)△DCM的周長最小時,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個點(diǎn),點(diǎn)C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.

(1)求圓形滾輪的半徑AD的長;

(2)當(dāng)人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時,點(diǎn)C距離水平地面73.5cm,求此時拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定※是一種新的運(yùn)算符號,且a※b=ab+a+b,例如:2※3=2×3+2+3=11,那么(3※4)※1=(
A.19
B.29
C.39
D.49

查看答案和解析>>

同步練習(xí)冊答案