【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ 與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱.
(1)填空:點(diǎn)B的坐標(biāo)為;
(2)過(guò)點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過(guò)點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.
【答案】
(1)(0, )
(2)解:∵B點(diǎn)坐標(biāo)為(0, ),
∴直線解析式為y=kx+ ,
解得:x=﹣ .
∴OC=﹣ .
∵PB=PC,
∴點(diǎn)P只能在x軸上方,
如圖,過(guò)點(diǎn)B作BD⊥l于點(diǎn)D,設(shè)PB=PC=m,
則BD=OC=﹣ ,CD=OB= ,
∴PD=PC﹣CD=m﹣ ,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣ )2+(﹣ )2,
解得:m= + .
∴PB= + .
∴點(diǎn)P坐標(biāo)為(﹣ , + ).
當(dāng)x=﹣ 時(shí),代入拋物線解析式可得:y= + ,
∴點(diǎn)P在拋物線上.
【解析】解:(1)∵y=﹣x2+ 的頂點(diǎn)A的坐標(biāo)為(0, ), ∴原點(diǎn)O關(guān)于點(diǎn)A的對(duì)稱點(diǎn)B的坐標(biāo)為(0, ),
所以答案是:(0, );
【考點(diǎn)精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點(diǎn),需要了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對(duì)稱的.
(2)寫(xiě)出點(diǎn)的坐標(biāo)(直接寫(xiě)答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大正方體上截去一個(gè)小正方體后,可得到圖的幾何體.
設(shè)原大正方體的表面積為,圖中幾何體的表面積為,那么與的大小關(guān)系是( )
、、、、不確定
小明說(shuō):“設(shè)圖中大正方體各棱的長(zhǎng)度之和為,圖中幾何體各棱的長(zhǎng)度之和為,那么比正好多出大正方體條棱的長(zhǎng)度.”若設(shè)大正方體的棱長(zhǎng)為,小正方體的棱長(zhǎng)為,請(qǐng)問(wèn)為何值時(shí),小明的說(shuō)法才正確?
如果截去的小正方體的棱長(zhǎng)為大正方體棱長(zhǎng)的一半,那么圖是圖中幾何體的表面展開(kāi)圖嗎?如有錯(cuò)誤,請(qǐng)?jiān)趫D中修正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同心⊙O中,大圓的半徑為5,大圓的弦AB與小圓交于CD,AB=8,CD=3.
(1)求AC的長(zhǎng);
(2)求小圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線上的一點(diǎn),,射線是的一條三等分線,且.(本題所涉及的角指小于平角的角)
(1)如圖,當(dāng)射線、、在直線的同側(cè),,則的度數(shù)為________;
(2)如圖,當(dāng)射線、、在直線的同側(cè),比的余角大,求的度數(shù)________;
(3)當(dāng)射線、在直線上方,射線在直線下方,小于,其余條件不變,請(qǐng)同學(xué)們自己畫(huà)出符合題意的圖形,探究與確定的數(shù)量關(guān)系式,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC和Rt△DBE中,∠ABC=∠EBD=90°,AB=BC,DB=EB.顯然可得結(jié)論AD=EC,AD⊥EC.
(1)閱讀:當(dāng)Rt△DBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖2的位置時(shí),連接AD,CE.求證:AD=EC,AD⊥EC.
下面給出了小亮的證明過(guò)程,請(qǐng)你把小亮的證明過(guò)程填寫(xiě)完整:
∵∠ABC=∠EBD,∴∠ABC-∠ABE=∠EBD-∠ABE,即∠EBC=∠DBA.在△EBC和△DBA中,
BC=BA,∠______=∠______,BE=BD,
∴△EBC≌△DBA,∴CE=AD,∠ECB=∠______.
∵∠ECB+∠ACE+∠CAB=90°,∴∠DAB+∠ACE+∠CAB=90°,∴∠______=90°,∴AD⊥EC.
(2)類比:當(dāng)Rt△DBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到圖3時(shí),連接AD,CE.問(wèn)(1)中線段AD,EC間的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)拓展:當(dāng)Rt△DBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖4時(shí),連接AD,CE.請(qǐng)說(shuō)明AD,EC間的數(shù)量關(guān)系和位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com