【題目】如圖,為中的一條射線,點在邊上,于,交于點,交于點,于點,交于點,連接交于點.
求證:四邊形為矩形;
若,試探究與的數(shù)量關系,并說明理由.
【答案】(1)詳見解析;(2),理由詳見解析.
【解析】
(1)根據(jù)垂直于同一直線的兩直線平行可得PH∥MD,再根據(jù)平行于同一直線的兩直線平行可得PM∥QR,然后求出四邊形PQRM是平行四邊形,再求出∠MPQ=90°,根據(jù)有一個角是直角的平行四邊形是矩形證明即可;
(2)根據(jù)矩形的對角線互相平分可得PS=PR,然后求出OP=PS,根據(jù)等邊對等角的性質可得∠POS=∠PSO,再根據(jù)兩直線平行,同位角相等可得∠SQR=∠BON,根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PSO=2∠SQR,然后整理即可得解.
∵,,
∴,
∵,,
∴,
∴四邊形是平行四邊形,
∵,
∴,
∵,
∴,
∴四邊形為矩形;
.理由如下:
∵四邊形為矩形,
∴,
∴,
又∵,
∴,
∴,
∵,
∴,
在中,,
∴,
∴,
即.
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)上述操作能驗證的等式是________(填A或B或C)
A.a2-2ab+b2=(a-b)2
B.a2-b2=(a+b)(a-b)
C.a2+ab=a(a+b)
(2)應用你從(1)中選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值
②計算:(1-)(1-)(1-)…(1-)(1-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,點是邊上的一個動點,過點作直線,交的平分線于點,交的外角平分線于點.
判斷與的大小關系?并說明理由;
當點運動到何處時,四邊形是矩形?并說出你的理由;
在的條件下,當滿足什么條件時,四邊形是正方形.直接寫出答案,不需說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在矩形中,,,四邊形的三個頂點、、分別在矩形邊、、上,.
如圖,當四邊形為正方形時,求的面積;
如圖,當四邊形為菱形時,設,的面積為,求關于的函數(shù)關系式,并寫出函數(shù)的定義域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com