【題目】當三角形中一個內(nèi)角是另一個內(nèi)角的2倍時,則稱此三角形為“倍角三角形”,其中角稱為“倍角”.若“倍角三角形”中有一個內(nèi)角為36°,則這個“倍角三角形”的“倍角”的度數(shù)可以是________________.
【答案】72°、96°、36°.
【解析】
“倍角三角形”中有一個內(nèi)角為36°,則有三種情況:①另兩個角為72°、72°,72°為倍角;②另兩個角分別為48°、96°,96°為倍角;③另兩個角分別為18°、126°,36°為倍角,分別求解即可.
解:∵“倍角三角形”中有一個內(nèi)角為36°,
∴有三種情況:
①三角形的三個內(nèi)角為:36°、72°、72°,另兩個角為72°、72°,72°為倍角;
②三角形的三個內(nèi)角為:36°、48°、96°,另兩個角分別為48°、96°,96°為倍角;
③三角形的三個內(nèi)角為:36°、18°、126°,另兩個角分別為18°、126°,36°為倍角,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD交于點O,過點O的直線分別交BC、AD于F、E.若AD=6cm,AB=4cm,OE=2cm,則梯形EFCD的周長是( )
A.16cmB.15cmC.14cmD.12cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形OBC的邊長為10,點P沿O→B→C→O的方向運動,⊙P的半徑為 . ⊙P運動一圈與△OBC的邊相切________次,每次相切時,點P到等邊三角形頂點最近距離是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代第一部自成體系的數(shù)學專著,代表了東方數(shù)學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請根據(jù)所學知識計算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且點A,C,E在同一條直線上.
(1)求證:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題探究)
將三角形紙片沿折疊,使點A落在點處.
(1)如圖,當點A落在四邊形的邊上時,直接寫出與之間的數(shù)量關(guān)系;
(2)如圖,當點A落在四邊形的內(nèi)部時,求證:;
(3)如圖,當點A落在四邊形的外部時,探索,,之間的數(shù)量關(guān)系,并加以證明;
(拓展延伸)
(4)如圖,若把四邊形紙片沿折疊,使點A、D落在四邊形的內(nèi)部點、的位置,請你探索此時,,,之間的數(shù)量關(guān)系,寫出你發(fā)現(xiàn)的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解題過程:
===-2;
==.
請回答下列問題:
(1)觀察上面的解題過程,請直接寫出式子= ;
(2)觀察上面的解題過程,請直接寫出式子= ;
(3)利用上面所提供的解法,請求+···+的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點C作BD的平行線,過點D作AC的平行線,兩線交于點P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com