【題目】如圖,在正方形ABCD中,AB=4,E為CD上一動(dòng)點(diǎn),AE交BD于F,過(guò)F作FH⊥AE于H,過(guò)H作GH⊥BD于G,下列有四個(gè)結(jié)論:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周長(zhǎng)為定值,其中正確的結(jié)論有( )
A.①②③
B.①②④
C.①③④
D.①②③④
【答案】D
【解析】
解答:解:①連接FC,延長(zhǎng)HF交AD于點(diǎn)L,
∵BD為正方形ABCD的對(duì)角線,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALH+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.
②∵FH⊥AE,F(xiàn)H=AF,
∴∠HAE=45°.
③連接AC交BD于點(diǎn)O,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH.
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
④延長(zhǎng)AD至點(diǎn)M,使AD=DM,過(guò)點(diǎn)C作CI∥HL,則:LI=HC,
根據(jù)△MEC≌△MIC,可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+I(xiàn)M=AM=8.
∴△CEM的周長(zhǎng)為8,為定值.
故(1)(2)(3)(4)結(jié)論都正確.
故選D.
分析:①作輔助線,延長(zhǎng)HF交AD于點(diǎn)L,連接CF,通過(guò)證明△ADF≌△CDF,可得:AF=CF,故需證明FC=FH,可證:AF=FH;
②由FH⊥AE,AF=FH,可得:∠HAE=45°;
③作輔助線,連接AC交BD于點(diǎn)O,證BD=2FG,只需證OA=GF即可,根據(jù)△AOF≌△FGH,可證OA=GF,故可證BD=2FG;(4)作輔助線,延長(zhǎng)AD至點(diǎn)M,使AD=DM,過(guò)點(diǎn)C作CI∥HL,則IL=HC,可證AL=HE,再根據(jù)△MEC≌△MIC,可證:CI=IM,故△CEM的周長(zhǎng)為邊AM的長(zhǎng),為定值
解答本題要充分利用正方形的特殊性質(zhì),在解題過(guò)程中要多次利用三角形全等
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊三角形ACD及等邊三角形ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.求證:
(1)AC=EF;
(2)四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過(guò)點(diǎn)A作⊙O的切線AE交CD的延長(zhǎng)線于點(diǎn)E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( )
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在不透明的口袋中,有三張形狀、大小、質(zhì)地完全相同的紙片,三張紙片上分別寫有函數(shù):①y=﹣x,②y=﹣,③y=2x2.
(1)在上面三個(gè)函數(shù)中,其函數(shù)圖象滿足在第二象限內(nèi)y隨x的增大而減小的函數(shù)有 (請(qǐng)?zhí)顚懶蛱?hào));現(xiàn)從口袋中隨機(jī)抽取一張卡片,則抽到的卡片上的函數(shù)圖象滿足在第二象限內(nèi)y隨x的增大而減小的概率為 ;
(2)王亮和李明兩名同學(xué)設(shè)計(jì)了一個(gè)游戲,規(guī)則為:王亮先從口袋中隨機(jī)抽取一張卡片,不放回,李明再?gòu)目诖须S機(jī)抽取一張卡片,若兩人抽到的卡片上的函數(shù)圖象都滿足在第二象限內(nèi)y隨x的增大而減小,則王亮得3分,否則李明得2分,請(qǐng)用列表或畫樹(shù)狀圖的方法說(shuō)明這個(gè)游戲?qū)﹄p方公平嗎?若你認(rèn)為不公平,如何修改規(guī)則才能使該游戲?qū)﹄p方公平呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列選項(xiàng)中哪個(gè)是方程( 。
A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表):
溫度/℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長(zhǎng)量/mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
這些數(shù)據(jù)說(shuō)明:植物每天高度增長(zhǎng)量關(guān)于溫度的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時(shí),這種植物每天高度增長(zhǎng)量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com