【題目】如圖,⊙O的半徑為4,點(diǎn)P是⊙O外的一點(diǎn),PO=10,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn),連接PA,直線l垂直平分PA,當(dāng)直線l與⊙O相切時(shí),PA的長(zhǎng)度為____________.
【答案】.
【解析】
如圖設(shè)切點(diǎn)為E,作OF⊥PA于F,連接OE.直線l交PA于K,則四邊形OEKF是矩形.設(shè)AK=PK=x,由OE=KF=4,推出AF=x﹣4,PF=x+4,由OF2=OA2﹣AF2=OP2﹣PF2,列出方程即可解決問(wèn)題.
如圖設(shè)切點(diǎn)為E,作OF⊥PA于F,連接OE.
直線l交PA于K,則四邊形OEKF是矩形.
設(shè)AK=PK=x.
∵OE=KF=4,
∴AF=x﹣4,PF=x+4.
在中,
∵OF2=OA2﹣AF2=OP2﹣PF2,
∴42﹣(x﹣4)2=102﹣(x+4)2,
∴x,
∴PA=2x.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA=4,C是射線OA上一點(diǎn),以O為圓心,OA的長(zhǎng)為半徑作使∠AOB=152°,P是上一點(diǎn),OP與AB相交于點(diǎn)D,點(diǎn)P′與P關(guān)于直線OA對(duì)稱,連接CP,
嘗試:
(1)點(diǎn)P′在所在的圓 (填“內(nèi)”“上”或“外”);
(2)AB= .
發(fā)現(xiàn):
(1)PD的最大值為 ;
(2)當(dāng)=2π,∠OCP=28時(shí),判斷CP與所在圓的位置關(guān)系探究當(dāng)點(diǎn)P′與AB的距離最大時(shí),求AP的長(zhǎng).(注:sin76°=cos14°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)大小不同的三角板放在同一平面內(nèi),直角頂點(diǎn)重合于點(diǎn),點(diǎn)在上,,與交于點(diǎn),連接,若,,則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廣場(chǎng)有一個(gè)小型噴泉,水流從垂直于地面的水管OA噴出,OA長(zhǎng)為1.5米.水流在各個(gè)方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點(diǎn)B到O的距離為3米.建立平面直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關(guān)系
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求水流噴出的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點(diǎn)與點(diǎn)在同一水平面上,與在同一平面內(nèi).某數(shù)學(xué)興趣小組為了測(cè)量樓的高度,在坡底處測(cè)得樓頂的仰角為,然后沿坡面上行了米到達(dá)點(diǎn)處,此時(shí)在處測(cè)得樓頂的仰角為,求樓的高度.(結(jié)果保留整數(shù))(參考數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在硬地上拋擲1枚圖釘,通常會(huì)出現(xiàn)如圖兩種情況:
八(1)班張老師讓同學(xué)們做拋擲圖釘試驗(yàn),每人拋擲1枚圖釘20次,班長(zhǎng)小明分別匯總5人、10人、15人…的試驗(yàn)結(jié)果,并將獲得的數(shù)據(jù)填入下表:
(1)填空:a= ,b= ;
(2)補(bǔ)全小明根據(jù)試驗(yàn)數(shù)據(jù)繪制的折線統(tǒng)計(jì)圖;
(3)仔細(xì)觀察“拋擲圖釘試驗(yàn)”的數(shù)據(jù)統(tǒng)計(jì)表和統(tǒng)計(jì)圖,試估計(jì)“釘尖不著地”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017湖南株洲第21題)某次世界魔方大賽吸引世界各地共600名魔方愛好者參加,本次大賽首輪進(jìn)行3×3階魔方賽,組委會(huì)隨機(jī)將愛好者平均分到20個(gè)區(qū)域,每個(gè)區(qū)域30名同時(shí)進(jìn)行比賽,完成時(shí)間小于8秒的愛好者進(jìn)入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛好者完成時(shí)間統(tǒng)計(jì)圖,求:
①A區(qū)域3×3階魔方愛好者進(jìn)入下一輪角逐的人數(shù)的比例(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
②若3×3階魔方賽各個(gè)區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計(jì)結(jié)果估計(jì)在3×3階魔方賽后進(jìn)入下一輪角逐的人數(shù).
③若3×3階魔方賽A區(qū)域愛好者完成時(shí)間的平均值為8.8秒,求該項(xiàng)目賽該區(qū)域完成時(shí)間為8秒的愛好者的概率(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的銷售單價(jià)為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)面包.設(shè)這種面包的銷售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷售這種面包的利潤(rùn)為y角.
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求x與y之間的函數(shù)關(guān)系式:
(3)當(dāng)這種面包的銷售單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=x﹣1的圖象與x軸,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y=的圖象交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,.
(1)求反比例函數(shù)的表達(dá)式與點(diǎn)D的坐標(biāo);
(2)以CE為邊作ECMN,點(diǎn)M在一次函數(shù)y=x﹣1的圖象上,設(shè)點(diǎn)M的橫坐標(biāo)為a,當(dāng)邊MN與反比例函數(shù)y=的圖象有公共點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com