【題目】如圖,以邊上一點為圓心的圓,經(jīng)過兩點,且與邊交于點的下半圓弧的中點,連接,若

1)求證:的切線;

2)若,,求的半徑.

【答案】1)見解析;(23

【解析】

1)連接OA、OD,求出∠D+OFD=90°,推出∠CAF=CFA,∠OAD=D,求出∠OAD+CAF=90°,根據(jù)切線的判定推出即可;

2OD=rOF=8-r,在RtDOF中根據(jù)勾股定理得出方程,求出即可.

解:

1)證明:連接OA,

DBE的下半圓弧的中點,OD過圓心,

ODBE,

∴∠ODF+OFD=90°,

CA=CF

∴∠CAF=CFA,

而∠CFA=OFD

∴∠ODF+CAF=90°,

OA=OD

∴∠ODA=OAD,

∴∠OAD+CAF=90°,即∠OAC=90°,

OAACOA是⊙O的半徑,

AC是⊙O的切線;

2)解:設(shè)⊙O的半徑為r,則OF=4r,

RtODF中,,解得r1=3,r2=1(舍去),

即⊙O的半徑為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請將有關(guān)問題補(bǔ)充完整.

收集數(shù)據(jù):

隨機(jī)抽取甲乙兩所學(xué)校的 20 名學(xué)生的數(shù)學(xué)成績進(jìn)行

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述數(shù)據(jù)

按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)

分析數(shù)據(jù)

兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

a經(jīng)統(tǒng)計,表格中m的值是 ___________

得出結(jié)論:

b若甲學(xué)校有 400 名初二學(xué)生,估計這次考試成績 80 分以上人數(shù)為____________

c可以推斷出 _______學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:①__________________;②_________________.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于,兩點,且,兩點均在直線的下方,那么下列說法正確的是(

A.拋物線開口一定向上B.拋物線的頂點不可能在第四象限

C.拋物線與已知直線有兩個交點D.拋物線的對稱軸可能在軸右側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點坐標(biāo);

2)試說明拋物線與直線有兩個交點;

3)已知點Tt,0),且-1≤t≤1,過點Tx軸的垂線,與拋物線交于點P,與直線交于點Q,當(dāng)0m≤3時,求線段PQ長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90AC=2,BC=3.點DAC的中點,聯(lián)結(jié)BD,過點CCGBD,交AC的垂線AG于點G,GC分別交BA、BD于點F、E

1)求GA的長;

2)求△AFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下表,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中仼意三個相鄰格子中所填整數(shù)之和都相等.

5

4

……

1)可求得_____;_____;_____

2)第2019個格子中的數(shù)為______;

3)前2020個格子中所填整數(shù)之和為______

4)前個格子中所填整數(shù)之和是否可能為2020?若能,求出的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.

請您根據(jù)圖中提供的信息回答下列問題:

1)統(tǒng)計圖中的a= ,b= ;

2)“D”對應(yīng)扇形的圓心角為 度;

3)根據(jù)調(diào)查結(jié)果,請您估計該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);

4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4,NBC上一點且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.

3)推廣運用:

如圖3,已知菱形ABCD的邊長為4,∠B60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案