【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請將有關(guān)問題補(bǔ)充完整.

收集數(shù)據(jù):

隨機(jī)抽取甲乙兩所學(xué)校的 20 名學(xué)生的數(shù)學(xué)成績進(jìn)行

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述數(shù)據(jù)

按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)

分析數(shù)據(jù)

兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

a經(jīng)統(tǒng)計(jì),表格中m的值是 ___________

得出結(jié)論:

b若甲學(xué)校有 400 名初二學(xué)生,估計(jì)這次考試成績 80 分以上人數(shù)為____________

c可以推斷出 _______學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:①__________________;②_________________.(至少從兩個(gè)不同的角度說明推斷的合理性)

【答案】整理、描述數(shù)據(jù):0,01,4,28,5a、88;b、300;c、乙,①乙學(xué)校的平均數(shù)高于甲學(xué)校;②乙學(xué)校的方差低于甲學(xué)校,說明乙學(xué)校的波動(dòng)程度較。

【解析】

整理、描述數(shù)據(jù):依據(jù)統(tǒng)計(jì)表中的數(shù)據(jù),即可得到乙校各分?jǐn)?shù)段的人數(shù);

a、依據(jù)統(tǒng)計(jì)表中的數(shù)據(jù)以及眾數(shù)的定義,即可得到m的值;

b、依據(jù)甲學(xué)?荚嚦煽80分以上人數(shù)所占的百分比,即可得到有400名初二學(xué)生中這次考試成績80分以上人數(shù);

c、從平均數(shù)、方差的角度分析,即可得到哪個(gè)學(xué)校學(xué)生的數(shù)學(xué)水平較高.

解:整理、描述數(shù)據(jù):

故答案為:0,0,1,4,2,85;

a、經(jīng)統(tǒng)計(jì),乙校的數(shù)據(jù)中88出現(xiàn)的次數(shù)最多,故表格中m的值是88
故答案為:88

b、若甲學(xué)校有400名初二學(xué)生,估計(jì)這次考試成績80分以上人數(shù)為400×300(人).
故答案為:300;

c、可以推斷出乙學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:①乙學(xué)校的平均數(shù)高于甲學(xué)校;②乙學(xué)校的方差低于甲學(xué)校,說明乙學(xué)校的波動(dòng)程度較。

故答案為:乙,①乙學(xué)校的平均數(shù)高于甲學(xué)校;②乙學(xué)校的方差低于甲學(xué)校,說明乙學(xué)校的波動(dòng)程度較。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,BC2,AC2,點(diǎn)DBC的中點(diǎn),點(diǎn)E是邊AB上一動(dòng)點(diǎn),沿DE所在直線把△BDE翻折到△BDE的位置,BDAB于點(diǎn)F.若△ABF為直角三角形,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC為銳角,點(diǎn)M為射線AB上一動(dòng)點(diǎn),連接CM,以點(diǎn)C為直角頂點(diǎn),以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB

1)如圖1,圖2,若△ABC為等腰直角三角形,

問題初現(xiàn):①當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),則線段BN,AM之間的位置關(guān)系是   ,數(shù)量關(guān)系是   ;

深入探究:②當(dāng)點(diǎn)M在線段AB的延長線上時(shí),判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

2)如圖3,∠ACB≠90°,若當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),MPCM交線段BN于點(diǎn)P,且∠CBA45°,BC,當(dāng)BM   時(shí),BP的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,CGAB于點(diǎn)G,∠ABF45°,FCD上,BFCG于點(diǎn)E,連接AE,且AEAD

1)若BG2,BC,求EF的長度;

2)求證:CE+BEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小蕓設(shè)計(jì)的“過圓外一點(diǎn)作已知圓的切線”的尺規(guī)作圖過程.

已知:⊙O 及⊙O 外一點(diǎn) P

求作:⊙O 的一條切線,使這條切線經(jīng)過點(diǎn) P

作法:①連接 OP,作 OP 的垂直平分線 l,交 OP 于點(diǎn) A;

②以 A 為圓心,AO 為半徑作圓,交⊙O 于點(diǎn) M;

③作直線 PM,則直線 PM 即為⊙O 的切線.

根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:連接 OM,

由作圖可知,A OP 中點(diǎn),

OP 為⊙A 直徑,

∴∠ 90°( )(填推理的依據(jù))

OMPM

又∵點(diǎn) M 在⊙O 上,

PM 是⊙O 的切線.( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,點(diǎn)GAC中點(diǎn),連結(jié)BG,CEBGF,交ABE,連接GE,點(diǎn)HAB中點(diǎn),連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結(jié)論的個(gè)數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校共有200名學(xué)生,為了解本學(xué)期學(xué)生參加公益勞動(dòng)的情況,收集了他們參加公益勞動(dòng)時(shí)間(單位:小時(shí))等數(shù)據(jù),以下是根據(jù)數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分.

學(xué)

人數(shù)

時(shí)間

性別

7

31

25

30

4

8

29

26

32

8

學(xué)段

初中

25

36

44

11

高中

下面有四個(gè)推斷:

①這200名學(xué)生參加公益勞動(dòng)時(shí)間的平均數(shù)一定在24.5-25.5之間

②這200名學(xué)生參加公益勞動(dòng)時(shí)間的中位數(shù)在20-30之間

③這200名學(xué)生中的初中生參加公益勞動(dòng)時(shí)間的中位數(shù)一定在20-30之間

④這200名學(xué)生中的高中生參加公益勞動(dòng)時(shí)間的中位數(shù)可能在20-30之間

所有合理推斷的序號是(

A. ①③B. ②④C. ①②③D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊上一點(diǎn)為圓心的圓,經(jīng)過、兩點(diǎn),且與邊交于點(diǎn),的下半圓弧的中點(diǎn),連接,若

1)求證:的切線;

2)若,,求的半徑.

查看答案和解析>>

同步練習(xí)冊答案