【題目】如圖,正方形ABCD的邊長為4,點E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長為半徑畫 ,連結AF,CF,則圖中陰影部分面積為 .
【答案】4π
【解析】解:設正方形EFGB的邊長為a,則CE=4﹣a,AG=4+a,
陰影部分的面積=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF
= +a2+ a(4﹣a)﹣ a(4+a)
=4π+a2+2a﹣ a2﹣2a﹣ a2
=4π.
所以答案是:4π.
【考點精析】本題主要考查了正方形的性質的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖所示,A、B兩地相距50千米,阿杜于某日下午1時騎自行車從A地出發(fā)駛往B地,浩浩也于同日下午騎摩托車按路線從A地出發(fā)駛往B地,如圖所示,圖中的折線PQR和線段MN分別表示阿杜和浩浩所行駛的路程S和時間t的關系:
根據圖象回答下列問題:
(1)阿杜和浩浩哪一個出發(fā)的更早?早出發(fā)多長時間?
(2)浩浩騎摩托車的速度和阿杜騎自行車在全程的平均速度分別是多少?
(3)請你根據圖象上的數據,求出浩浩出發(fā)用多長時間就追上阿杜?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產品運到B地.已知公路運價為1.5元/(噸·千米),鐵路運價為1.2元/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.
求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產品多少噸?
(2)這批產品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點P為邊BC上一點,在AC上取一點D,使AD=AP.
(1)若∠APD=80°,求∠DPC的度數;
(2)若∠APD=α,求∠BAP(用含α的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲乙兩數學興趣小組測量出CD的高度,甲小組在地面A處測量,乙小組在上坡B處測量,AB=200m,甲小組測得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測得山頂D的仰角為58°,求山CD的高度(結果保留一位小數)
參考數據:tan58°≈1.60, ≈1.732,供選用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC為等邊三角形,D為BC上任一點,∠ADE=60°,邊DE與∠ACB外角的平分線相交于點E.
(1)求證:AD=DE.
(2)若點D在CB的延長線上,如圖2,(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用完全平方公式因式分解在數學中的應用,請回答下列問題:
(1)因式分解:________.
(2)填空:
①當時,代數式________;
②當________時,代數式;
③代數式的最小值是________.
(3)拓展與應用:求代數式的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下列一段文字,再回答問題:
已知平面內兩點P1(x1,y1)、P2(x2,y2),這兩點間的距離P1P2=.同時當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間的距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知點A(2,3)、B(4,2),試求A、B兩點間的距離;
(2)已知點A、B在平行于x軸的直線上,點A的橫坐標為7,點B的橫坐標為5,試求A、B兩點間的距離;
(3)已知一個三角形的各頂點坐標為A(﹣2,1)、B(1,4)、C(1﹣a,5),試用含a的式子表示△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com