【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)Cx軸的正半軸上,直線ACy軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.

(1)菱形ABCO的邊長(zhǎng)   

(2)求直線AC的解析式;

(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,

①當(dāng)0<t<時(shí),求St之間的函數(shù)關(guān)系式;

②在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)S=3,請(qǐng)直接寫出t的值.

【答案】(1)5;(2)直線AC的解析式y=﹣x+;(3)見解析

【解析】分析:(1)RtAOH中利用勾股定理即可求得菱形的邊長(zhǎng);

(2)根據(jù)(1)即可求的OC的長(zhǎng),則C的坐標(biāo)即可求得,利用待定系數(shù)法即可求得直線AC的解析式;

(3)根據(jù)SABC=SAMB+SBMC求得M到直線BC的距離為h,然后分成PAM上和在MC上兩種情況討論,利用三角形的面積公式求解.

詳解:(1)RtAOH中,

AO===5,

所以菱形邊長(zhǎng)為5;

故答案為:5;

(2)∵四邊形ABCO是菱形,

OC=OA=AB=5,即C(5,0).

設(shè)直線AC的解析式y=kx+b,函數(shù)圖象過點(diǎn)A、C,得

,解得

直線AC的解析式y=﹣x+;

(3)設(shè)M到直線BC的距離為h,

當(dāng)x=0時(shí),y=,即M(0,),HM=HO﹣OM=4﹣=,

SABC=SAMB+SBMC=ABOH=ABHM+BCh,

×5×4=×5×+×5h,解得h=,

①當(dāng)0<t<時(shí),BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,

S=BPHM=×(5﹣2t)=﹣t+;

②當(dāng)2.5<t≤5時(shí),BP=2t﹣5,h=

S=BPh=×(2t﹣5)=t﹣,

S=3代入①中的函數(shù)解析式得,3=﹣t+,

解得:t=

S=3代入②的解析式得,3=t﹣,

解得:t=

t=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化源遠(yuǎn)流長(zhǎng),文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱為“四大古典名著”.某中學(xué)為了解學(xué)生對(duì)四大名著的閱讀情況,就“四大古典名著”你讀完了幾部的問題在全校900名學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解決下列問題

1)本次調(diào)查被調(diào)查的學(xué)生__________名,學(xué)生閱讀名著數(shù)量(部)的眾數(shù)是__________,中位數(shù)是__________;

2)扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為__________度;

3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)試估算全校大約有多少學(xué)生讀完了3部以上(含3部)名著.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖案中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,A, B是直線l上的兩點(diǎn),點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為M,連接ADF點(diǎn).

1)若,如圖,

依題意補(bǔ)全圖形;

判斷MFFC的數(shù)量關(guān)系是 ;

2)如圖,當(dāng)時(shí),,CD的延長(zhǎng)線相交于點(diǎn)E,取E的中點(diǎn)H,連結(jié)HF. 用等式表示線段CEAF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的兩條邊、分別在軸和軸上,已知點(diǎn) 坐標(biāo)為(4–3).把矩形沿直線折疊,使點(diǎn)落在點(diǎn)處,直線、的交點(diǎn)分別為、、.

(1)線段 ;

(2)求點(diǎn)坐標(biāo)及折痕的長(zhǎng);

(3)若點(diǎn)軸上,在平面內(nèi)是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,則請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.

(1)求點(diǎn)C的坐標(biāo);

(2)當(dāng)∠BCP=15°時(shí),求t的值;

(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,過點(diǎn)A引射線,交邊于點(diǎn)HH不與點(diǎn)D重合).通過翻折,使點(diǎn)B落在射線上的點(diǎn)G處,折痕E,連接E,G并延長(zhǎng)F

1)如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),的大小關(guān)系是_____________________三角形.

2)如圖2,當(dāng)點(diǎn)H為邊上任意一點(diǎn)時(shí)(點(diǎn)H與點(diǎn)C不重合).連接,猜想的大小關(guān)系,并證明你的結(jié)論.

3)在圖2,當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果2bn,那么稱bn的布谷數(shù),記為bgn),如g8)=g23)=3

1)根據(jù)布谷數(shù)的定義填空:g2)=   ,g32)=   

2)布谷數(shù)有如下運(yùn)算性質(zhì):若m,n為正數(shù),則gmn)=gm+gn),g)=gm)﹣gn).根據(jù)運(yùn)算性質(zhì)填空:   ,(a為正數(shù)).若g7)=2.807,則g14)=   ,g)=   

3)下表中與數(shù)x對(duì)應(yīng)的布谷數(shù)gx)有且僅有兩個(gè)是錯(cuò)誤的,請(qǐng)指出錯(cuò)誤的布谷數(shù),要求說(shuō)明你這樣找的理由,并求出正確的答案(用含a,b的代數(shù)式表示)

x

3

6

9

27

gx

14a+2b

12a+b

2ab

3a2b

4a2b

6a3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個(gè)結(jié)論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個(gè)數(shù)是(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案