【題目】抗擊疫情,人人有責(zé),某校成立教師志愿者分隊(duì),共分宣傳、測溫、清理(主要廚余垃圾清理)、統(tǒng)計(jì)(師生疫情信息統(tǒng)計(jì))四組,為了解教師對這四個小組的參與意愿情況調(diào)查,對教師進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表.

請你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問題:

1)統(tǒng)計(jì)表中的_ ,b=_ ;

2)根據(jù)調(diào)查結(jié)果,請你估計(jì)該市名教師中最有意向參與清理小組的人數(shù);

3)王老師和李老師選擇參與小組,若他們每人從四個小組中隨機(jī)選取一個,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一個的概率.

【答案】1,;(21000;(3

【解析】

1)由B小組的頻數(shù)和頻率,根據(jù)可得總?cè)藬?shù);進(jìn)而可求;

2)總?cè)藬?shù)乘以小組對應(yīng)頻率可得;

3)根據(jù)題意畫樹狀圖,求出所有等可能的結(jié)果,再用兩人恰好選中同一類的結(jié)果數(shù)除以總的結(jié)果數(shù)即可.

解:(1)總?cè)藬?shù),

C小組的頻率,

故答案為:60、025;

2)估計(jì)該市4000名教師中最有意向參與清理小組的人數(shù)(人;

3)根據(jù)題意畫樹狀圖如下:

共有16種等可能的結(jié)果,其中兩人恰好選中同一類的結(jié)果有4種,

兩人恰好選中同一類的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,拋物線正半軸于點(diǎn),將拋物線先向右平移個單位,再向下平移個單位得到拋物線,交于點(diǎn),直線于點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是拋物線(含端點(diǎn))間的一點(diǎn),作軸交拋物線于點(diǎn),連按,.當(dāng)的面積為時, 求點(diǎn)的坐標(biāo);

3)如圖②,將直線向上平移,交拋物線于點(diǎn)、,交拋物線于點(diǎn)、,試判斷的值是否為定值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)為

1)求(用的代數(shù)式表示);

2)若在自變量的值滿足的情況下,與其對應(yīng)的函數(shù)值的最大值為1,求的值;

3)已知點(diǎn)和點(diǎn).若二次函數(shù)的圖象與線段有兩個不同的交點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點(diǎn)分別為、,與軸分別相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)和、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),

     

1)函數(shù)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù),值同時隨著的增大而增大時,則的取值范圍是_______;

2)判斷四邊形的形狀(直接寫出,不必證明);

3)拋物線,均會分別經(jīng)過某些定點(diǎn);

①求所有定點(diǎn)的坐標(biāo);

②若拋物線位置固定不變,通過平移拋物線的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線應(yīng)平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時,在拋物線上是否存在點(diǎn),使的面積為1?若存在,請求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸相交于兩點(diǎn),點(diǎn)坐標(biāo)為,拋物線的對稱軸是直線

1)求拋物線的解析式;

2)點(diǎn)軸右側(cè)拋物線圖像上的一動點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.

①是否存在這樣的點(diǎn)使得?若存在,求出的值;若不存在,請說明理由;

②若該動點(diǎn)在第一象限內(nèi),連接,當(dāng)時,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)在正方形的對角線上,垂足為點(diǎn),垂足為點(diǎn)

1)證明與推斷:

求證:四邊形是正方形;

推斷:的值為_ _;

2)探究與證明:

將正方形繞點(diǎn)順時針方向旋轉(zhuǎn),如圖(2)所示,試探究線段之間的數(shù)量關(guān)系,并說明理由;

3)拓展與運(yùn)用:

,正方形在繞點(diǎn)旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在一條直線上時,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)分別是邊,上的點(diǎn),且

1)若,,設(shè),,求關(guān)于的函數(shù)關(guān)系式;

2)如圖,,于點(diǎn),于點(diǎn),于點(diǎn),點(diǎn)在線段上,,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市青山綠水行動中,某社區(qū)計(jì)劃對面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個工程隊(duì)來完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時,甲隊(duì)比乙隊(duì)少用6天.

(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;

(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,社區(qū)要使這次綠化的總費(fèi)用不超過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?

查看答案和解析>>

同步練習(xí)冊答案