【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,其中∠BAC=∠EDF=90°、AB=AC=1,△DEF中的點(diǎn)E在BC邊上運(yùn)動(dòng)(不與B、C重合),DE始終經(jīng)過點(diǎn)A,設(shè)EF交AC于點(diǎn)H
(1)求證:△ABE∽△ECH;
(2)設(shè)BE= ,CH= ,求與的函數(shù)關(guān)系式,并求當(dāng)取何值時(shí), 有最大值,最大值是多少?
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到何處時(shí),△ABE是等腰三角形,并求出此時(shí)CH的長(zhǎng)。
【答案】(1)證明見解析;(2)見解析.
【解析】試題分析: 由等腰直角三角形的性質(zhì)可得通過角的等量代換得到至此,便可證明
由的結(jié)論,利用相似三角形的對(duì)應(yīng)邊成比例可得 結(jié)合等腰直角三角形的性質(zhì)求出的長(zhǎng),進(jìn)而用含的代數(shù)式表示出,從而得到與的函數(shù)關(guān)系式;分析可知,得到的函數(shù)關(guān)系式是二次函數(shù),利用二次函數(shù)的性質(zhì)即可求出取最大值時(shí)對(duì)應(yīng)的的值以及的最大值;
由等腰三角形的性質(zhì)可知需要分情況進(jìn)行討論.
試題解析: 證明:因?yàn)?/span>
所以
所以
所以
(2)由(1)可知,
所以
因?yàn)?/span>是等腰直角三角形,
所以
因?yàn)?/span>
所以
所以
所以
所以當(dāng)時(shí), 有最大值,最大值 .
(3)①當(dāng)時(shí),因?yàn)?/span>
所以
所以
此時(shí)
②當(dāng)時(shí), 此時(shí)
綜上可知,當(dāng)或時(shí), 是等腰三角形,
的長(zhǎng)為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列各數(shù)填到相應(yīng)的集合里:
-,+5,-9,π,,19, 1.2, 0,-5.26,0.8256…,5.3
正數(shù)集合﹛ …﹜
負(fù)數(shù)集合﹛ …﹜
整數(shù)集合﹛ …﹜
分?jǐn)?shù)集合﹛ …﹜
有理數(shù)集合﹛ …﹜
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,C地位于A、B兩地之間,甲步行直接從C地前往B地,乙騎自行車由C地先回A地,再從A地前往B地(在A地停留時(shí)間忽略不計(jì)),已知兩人同時(shí)出發(fā)且速度不變,乙的速度是甲的2.5倍,設(shè)出發(fā)xmin后,甲、乙兩人離C地的距離為y1m、y2m,圖②中線段OM表示y1與x的函數(shù)圖象.
(1)甲的速度為______m/min.乙的速度為______m/min.
(2)在圖②中畫出y2與x的函數(shù)圖象,并求出乙從A地前往B地時(shí)y2與x的函數(shù)關(guān)系式.
(3)求出甲、乙兩人相遇的時(shí)間.
(4)請(qǐng)你重新設(shè)計(jì)題干中乙騎車的條件,使甲、乙兩人恰好同時(shí)到達(dá)B地.
要求:①不改變甲的任何條件.
②乙的騎行路線仍然為從C地到A地再到B地.
③簡(jiǎn)要說明理由.
④寫出一種方案即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在做多項(xiàng)式乘法的時(shí)候發(fā)現(xiàn),兩個(gè)多項(xiàng)式相乘在合并同類項(xiàng)后的結(jié)果存在缺項(xiàng)的可能。比如x+2和x- 2相乘的結(jié)果為 , x的一次項(xiàng)沒有了。
(1)請(qǐng)計(jì)算 與x-2相乘后的結(jié)果,并觀察x的幾次項(xiàng)沒有了?
(2)請(qǐng)想一下,與x+a相乘后的結(jié)果可不可能讓一次項(xiàng)消失,如果可能,那么a應(yīng)該是多少呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點(diǎn)P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點(diǎn),連結(jié)PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(3,4),B(2,0),C(8,0).
(1)請(qǐng)畫出△ABC關(guān)于坐標(biāo)原點(diǎn)O的中心對(duì)稱圖形△A′B′C′,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo) ;
(2)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.
(1)甲、乙兩種款型的T恤衫各購進(jìn)多少件?
(2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△BCF中,點(diǎn)D是邊CF上的一點(diǎn),過點(diǎn)D作AD∥BC,過點(diǎn)B作BA∥CD交AD于點(diǎn)A,點(diǎn)G是BC的中點(diǎn),點(diǎn)E是線段AD上一點(diǎn),且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,請(qǐng)求出AB的長(zhǎng);
(2)求證:CD=BF+DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com