【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(3,4),B(2,0),C(8,0).
(1)請畫出△ABC關(guān)于坐標(biāo)原點(diǎn)O的中心對稱圖形△A′B′C′,并寫出點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo) ;
(2)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .
【答案】(1)見解析,(﹣3,﹣4);(2)(9,4)或(﹣3,4)或(7,﹣4).
【解析】
(1)作A、B、C三點(diǎn)關(guān)于原點(diǎn)O的對稱點(diǎn)A′、B′、C′,再依次連接即可,再根據(jù)關(guān)于原點(diǎn)對稱的規(guī)律寫出A′的坐標(biāo);
(2)依據(jù)平行四邊形的判定,畫出平行四邊形ABCD,即可得到平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
解:(1)如圖所示,△A′B′C′即為所求,
故答案為:(﹣3,﹣4);
(2)如圖所示,以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為(9,4)或(﹣3,4)或(7,﹣4).
故答案為:(9,4)或(﹣3,4)或(7,﹣4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,點(diǎn)E在直線AB上,點(diǎn)G在直線CD上,點(diǎn)P在直線AB.CD之間,∠AEP=40°,∠EPG=900
(1)填空:∠PGC=_________0;
(2)如圖, 點(diǎn)F在直線AB上,聯(lián)結(jié)FG,∠EFG的平分線與∠PGD的平分線相交于點(diǎn)Q,當(dāng)點(diǎn)F在點(diǎn)E的右側(cè)時(shí),如果∠EFG=30°,求∠FQG的度數(shù);
解:過點(diǎn)Q作QM∥CD
因?yàn)椤?/span>PGC+∠PGD=1800
由(1)得∠PGC=_______0,
所以∠PGD=1800-∠PGC=________0,
因?yàn)?/span>GQ平分∠PGD,
所以∠PGQ=∠QGD=∠PGD=_________0
(下面請補(bǔ)充完整求∠FQG度數(shù)的解題過程)
(3)點(diǎn)F在直線AB上,聯(lián)結(jié)FG,∠EFG的平分線與∠PGD的平分線相交于點(diǎn)Q.如果∠FQG=2∠BFG,請直接寫出∠EFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為△ABC與△DEC重疊的情形,其中E在BC上,AC交DE于F點(diǎn),且AB∥DE.若△ABC與△DEC的面積相等,且EF=2,AB=3,則DF的長等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,其中∠BAC=∠EDF=90°、AB=AC=1,△DEF中的點(diǎn)E在BC邊上運(yùn)動(dòng)(不與B、C重合),DE始終經(jīng)過點(diǎn)A,設(shè)EF交AC于點(diǎn)H
(1)求證:△ABE∽△ECH;
(2)設(shè)BE= ,CH= ,求與的函數(shù)關(guān)系式,并求當(dāng)取何值時(shí), 有最大值,最大值是多少?
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到何處時(shí),△ABE是等腰三角形,并求出此時(shí)CH的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題再現(xiàn):
數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法,借助這種思想方法可將抽象的數(shù)學(xué)知識變得直觀并且具有可操作性.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義驗(yàn)證完全平方公式.
將一個(gè)邊長為的正方形的邊長增加,形成兩個(gè)長方形和兩個(gè)正方形,如圖所示:這個(gè)圖形的面積可以表示成:
或
∴
這就驗(yàn)證了兩數(shù)和的完全平方公式.
類比解決:
請你類比上述方法,利用圖形的幾何意義驗(yàn)證平方差公式.
(要求畫出圖形并寫出推理過程)
問題提出:如何利用圖形幾何意義的方法證明?
如圖所示,表示1個(gè)1×1的正方形,即:,表示1個(gè)2×2的正方形,與恰好可以拼成1個(gè)2×2的正方形,因此:、、就可以表示2個(gè)2×2的正方形,即:而、、、恰好可以拼成一個(gè)的大正方形.
由此可得:.
嘗試解決:
請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:_______.(要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).
問題拓廣:
請用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結(jié)論即可,不必寫出解題過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC
(1)作對角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)連接AF、CE,判斷四邊形AFCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形紙片對折得到矩形ABCD,點(diǎn)E在BC上,把△ECD沿ED折疊,使點(diǎn)C恰好落在AD上點(diǎn)C′處,點(diǎn)M、N分別是線段AC′與線段BE上的點(diǎn),把四邊形ABNM沿NM向下翻折,點(diǎn)A落在DE的中點(diǎn)A′處.若原正方形的邊長為12,則線段MN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦經(jīng)銷商計(jì)劃購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購電腦機(jī)箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進(jìn)電腦機(jī)箱2臺和液示器5臺,共需要資金4120元.
(1)每臺電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷商購進(jìn)這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機(jī)箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
① ②
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
解答下列問題:
(1)一元二次不等式x2﹣25>0的解集為 ;
(2)分式不等式的解集為 ;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com