【題目】關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.
(1)求m的取值范圍;
(2)若m為正整數(shù),求此方程的根.

【答案】
(1)解:根據(jù)題意得m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,

解得m≤ 且m≠0;


(2)解:∵m為正整數(shù),

∴m=1,

∴原方程變形為x2+x=0,解得x1=0,x2=﹣1


【解析】(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,然后求出兩個不等式的公共部分即可;(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.
【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點、邊上,,,為了判斷的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi),注明推理的根據(jù).

解:作,垂足為

________三角形,

________

又∵,

________,即________;

又∵________(自己所作),

是線段________的垂直平分線;

________

________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EABC外部,點DBC邊上,DEAC于點F,若∠C=E,∠BAD=CAE,AC=AE

(1)求證:ABC≌△ADE

(2)若∠B=60°,求證:ABD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:6sin60°﹣( 2 +|2﹣ |.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯角,一對同旁內(nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,CD與CE分別是斜邊AB上的高與中線,以下判斷中正確的個數(shù)有(  )

①∠DCB=∠A;②∠DCB=∠ACE;③∠ACD=∠BCE;④∠BCE=∠BEC.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以40元/千克的進價購進一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售價x(元/千克)成一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價應定為多少元?

查看答案和解析>>

同步練習冊答案