【題目】(2017廣東省廣州市,第24題,14分)如圖,矩形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,△COD關(guān)于CD的對(duì)稱(chēng)圖形為△CED.
(1)求證:四邊形OCED是菱形;
(2)連接AE,若AB=6cm,BC=cm.
①求sin∠EAD的值;
②若點(diǎn)P為線(xiàn)段AE上一動(dòng)點(diǎn)(不與點(diǎn)A重合),連接OP,一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以1cm/s的速度沿線(xiàn)段OP勻速運(yùn)動(dòng)到點(diǎn)P,再以1.5cm/s的速度沿線(xiàn)段PA勻速運(yùn)動(dòng)到點(diǎn)A,到達(dá)點(diǎn)A后停止運(yùn)動(dòng),當(dāng)點(diǎn)Q沿上述路線(xiàn)運(yùn)動(dòng)到點(diǎn)A所需要的時(shí)間最短時(shí),求AP的長(zhǎng)和點(diǎn)Q走完全程所需的時(shí)間.
【答案】(1)見(jiàn)解析;(2)①;②AP的長(zhǎng)為,點(diǎn)Q走完全程所需的時(shí)間為3s.
【解析】
(1)只要證明四邊相等即可證明;
(2)①設(shè)AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,可以求出AK的長(zhǎng),根據(jù)sin∠DAE=計(jì)算即可解決問(wèn)題;
②作PF⊥AD于F.易知PF=APsin∠DAE=AP,因?yàn)辄c(diǎn)Q的運(yùn)動(dòng)時(shí)間t==OP+AP=OP+PF,所以當(dāng)O、P、F共線(xiàn)時(shí),OP+PF的值最小,此時(shí)OF是△ACD的中位線(xiàn),由此即可解決問(wèn)題.
(1)∵四邊形ABCD是矩形,
∴OD=OB=OC=OA,
∵△EDC和△ODC關(guān)于CD對(duì)稱(chēng),
∴DE=DO,CE=CO,
∴DE=EC=CO=OD,
∴四邊形CODE是菱形.
(2)①設(shè)AE交CD于K.
∵四邊形CODE是菱形,
∴DE∥AC,DE=OC=OA,
∴==.
∵AB=CD=6,
∴DK=2,CK=4,
在Rt△ADK中,AK= = =3,
∴sin∠DAE==;
②作PF⊥AD于F.易知PF=APsin∠DAE=AP,
∵點(diǎn)Q的運(yùn)動(dòng)時(shí)間t==OP+AP=OP+PF,
∴當(dāng)O、P、F共線(xiàn)時(shí),OP+PF的值最小,此時(shí)OF是△ACD的中位線(xiàn),
∴OF=CD=3.AF=AD=,PF=DK=1,
∴AP= =,
∴當(dāng)點(diǎn)Q沿上述路線(xiàn)運(yùn)動(dòng)到點(diǎn)A所需要的時(shí)間最短時(shí),AP的長(zhǎng)為,點(diǎn)Q走完全程所需的時(shí)間為3s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解學(xué)生對(duì)新聞、體育、娛樂(lè)、動(dòng)畫(huà)四類(lèi)電視節(jié)目的喜愛(ài)情況,進(jìn)行了統(tǒng)計(jì)調(diào)查.隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目(每名學(xué)生必選且只能選擇四類(lèi)節(jié)目中的一類(lèi))并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計(jì)圖.根據(jù)兩圖提供的信息,回答下列問(wèn)題:
(1)最喜歡娛樂(lè)類(lèi)節(jié)目的有 人,圖中 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,若該校有2000名學(xué)生,請(qǐng)你估計(jì)該校有多少名學(xué)生最喜歡娛樂(lè)類(lèi)節(jié)目;
(4)在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類(lèi)節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識(shí)競(jìng)賽,請(qǐng)用列表法或樹(shù)狀圖求同時(shí)選中甲、乙兩同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級(jí)畢業(yè)生統(tǒng)一參加中考實(shí)驗(yàn)操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗(yàn)操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級(jí)學(xué)生,需參加實(shí)驗(yàn)考試.
(1)小明抽到化學(xué)實(shí)驗(yàn)的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中學(xué)生為了解該校學(xué)生喜歡球類(lèi)活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能填寫(xiě)一種自己喜歡的球類(lèi)),并將調(diào)査的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題
(1)參加調(diào)査的學(xué)生共有 人,在扇形圖中,表示“其他球類(lèi)”的扇形圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2300名學(xué)生,則估計(jì)喜歡“足球”的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,先有一張矩形紙片點(diǎn)分別在矩形的邊上,將矩形紙片沿直線(xiàn)MN折疊,使點(diǎn)落在矩形的邊上,記為點(diǎn),點(diǎn)落在處,連接,交于點(diǎn),連接.下列結(jié)論:
②四邊形是菱形;
③重合時(shí),;
④的面積的取值范圍是
其中正確的是_____(把正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,,BC為的直徑,D為任意一點(diǎn),連接AD交BC于點(diǎn)F,EA⊥AD交DB的延長(zhǎng)線(xiàn)于E,連接CD.
(1)求證:△ABE≌△ACD;
(2)填空:①當(dāng)∠CAD的度數(shù)為 時(shí),四邊形ABDC是正方形;
②若四邊形ABDC的面積為4,則AD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形AOBC的邊AO、OB分別在y軸、x軸正半軸上,點(diǎn)C的坐標(biāo)為(8,6),點(diǎn)E是x軸上任意一點(diǎn),連接EC,交AB所在直線(xiàn)于點(diǎn)F,當(dāng)△ACF為等腰三角形時(shí),EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形ABCD中,E為BC邊上一點(diǎn),連接AE,作AE的垂直平分線(xiàn)交AB于G,交CD于F,若BG=2BE,則DF:CF的長(zhǎng)為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)L: (常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過(guò)線(xiàn)段OA的中點(diǎn)M作MP⊥x軸,交雙曲線(xiàn)于點(diǎn)P,且OA·MP=12.
(1)求k值;
(2)當(dāng)t=1時(shí),求AB長(zhǎng),并求直線(xiàn)MP與L對(duì)稱(chēng)軸之間的距離;
(3)把L在直線(xiàn)MP左側(cè)部分的圖象(含與直線(xiàn)MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo);
(4)設(shè)L與雙曲線(xiàn)有個(gè)交點(diǎn)的橫坐標(biāo)為x0,且滿(mǎn)足4≤x0≤6,通過(guò)L位置隨t變化的過(guò)程,直接寫(xiě)出t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com