【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過A,B兩點(diǎn),過點(diǎn)A作AC⊥x軸,垂足為C,過點(diǎn)B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點(diǎn)E,若OC=CD,四邊形BDCE的面積為2,則k的值為 .
【答案】-
【解析】解:設(shè)點(diǎn)B坐標(biāo)為(a,b),則DO=﹣a,BD=b
∵AC⊥x軸,BD⊥x軸
∴BD∥AC
∵OC=CD
∴CE= BD= b,CD= DO= a
∵四邊形BDCE的面積為2
∴ (BD+CE)×CD=2,即 (b+ b)×(﹣ a)=2
∴ab=﹣
將B(a,b)代入反比例函數(shù)y= (k≠0),得
k=ab=﹣
所以答案是:﹣
【考點(diǎn)精析】利用比例系數(shù)k的幾何意義和平行線分線段成比例對(duì)題目進(jìn)行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底總G為BC的中點(diǎn),則矮建筑物的高CD為( )
A.20米
B.米
C.米
D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,P為AB上的一點(diǎn),在下列四個(gè)條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能滿足△APC和△ACB相似的條件是( 。
A.①②④
B.①③④
C.②③④
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點(diǎn)P(a,b)在函數(shù)y= 的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y= 的圖象上,則函數(shù)y=2x2+ x稱為函數(shù)y= 的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題:(1)存在函數(shù)y= 的一個(gè)“派生函數(shù)”,其圖象的對(duì)稱軸在y軸的右側(cè);(2)函數(shù)y= 的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn).
下列判斷正確的是( )
A.命題(1)與命題(2)都是真命題
B.命題(1)與命題(2)都是假命題
C.命題(1)是假命題,命題(2)是真命題
D.命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(列方程(組)及不等式解應(yīng)用題)
春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點(diǎn),將這條拋物線的頂點(diǎn)記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚竿可收縮,完全收縮后,魚竿長(zhǎng)度即為第1節(jié)套管的長(zhǎng)度(如圖1所示):使用時(shí),可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長(zhǎng)50cm,第2節(jié)套管長(zhǎng)46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長(zhǎng)度的重疊,設(shè)其長(zhǎng)度為xcm.
(1)請(qǐng)直接寫出第5節(jié)套管的長(zhǎng)度;
(2)當(dāng)這根魚竿完全拉伸時(shí),其長(zhǎng)度為311cm,求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com