【題目】如圖,△ABC中,P為AB上的一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能滿足△APC和△ACB相似的條件是( 。

A.①②④
B.①③④
C.②③④
D.①②③

【答案】D
【解析】解:當(dāng)∠ACP=∠B,
∠A公共,
所以△APC∽△ACB;
當(dāng)∠APC=∠ACB,
∠A公共,
所以△APC∽△ACB;
當(dāng)AC2=APAB,
即AC:AB=AP:AC,
∠A公共,
所以△APC∽△ACB;
當(dāng)ABCP=APCB,即
而∠PAC=∠CAB,
所以不能判斷△APC和△ACB相似.
故選D.
根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對①②進行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對③④進行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,如果AB=30cm,BC=24cm,AC=27cm,AE=EF=FB,EG∥DF∥BC,F(xiàn)M∥EN∥AC,則圖中陰影部分的三個三角形周長之和為( )

A.70
B.75
C.81
D.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是(  )
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四條線段為成比例線段的是( 。
A.a=10,b=5,c=4,d=7
B.a=1,b= , c= , d=
C.a=8,b=5,c=4,d=3
D.a=9,b= , c=3,d=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測藥物8分鐘燃畢,此時空氣中每立方米含藥量為6毫克,請根據(jù)題中所提供的信息,回答下列問題

(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為,自變量x的取值范圍是;藥物燃燒完后,y與x的函數(shù)關(guān)系式為
(2)研究表明,當(dāng)空氣中的每立方米的含藥量低于1.6毫克時學(xué)生方可進教室,那么從消毒開始,至少需要經(jīng)過幾分鐘后,學(xué)生才能回到教室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過A,B兩點,過點A作AC⊥x軸,垂足為C,過點B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點E,若OC=CD,四邊形BDCE的面積為2,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A在第二象限內(nèi),點B在x軸上,∠AOB=30°,AB=BO,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A,若SABO= ,則k的值為

查看答案和解析>>

同步練習(xí)冊答案