【題目】我們把有一條邊是另一條邊的2倍的梯形叫做“倍邊梯形”,在O中,直徑AB2,PQ是弦,若四邊形ABPQ是“倍邊梯形”,那么PQ的長為_____

【答案】1

【解析】

由梯形知ABPQ,據(jù)此可得AQ=BP,即四邊形ABPQ是等腰梯形,再根據(jù)倍邊梯形的定義分AB=2PQAB=2AQ兩種情況求解可得.

解:如圖,

∵四邊形ABPQ是梯形,

PQAB,

AQPB,

∵四邊形ABPQ是“倍邊梯形”,且AB2,

∴當AB2PQ時,PQ1;

AB2AQ2時,AQPB1,

OAOQOPOB1,

∴△AOQ、△BOP均為等邊三角形,

∴∠AOQ=∠BOP60°,

則∠POQ60°,

OQOP1,

∴△POQ也是等邊三角形,

PQ1;

綜上,PQ1,

故答案為:1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了美化城市環(huán)境,某街道重修了路面,準備將老舊的路燈換成LED太陽能路燈,計劃購買海螺臂和A字臂兩種型號的太陽能路燈共100只,經過市場調查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.

1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價:

2)在實際購買時,恰逢商家活動,購買海螺臂太陽能路燈超過20只時,超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數(shù)量不少于A字臂太陽能路燈的數(shù)量的一半,請你設計一種購買方案,使得總費用最少,并求出最小總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在⊙O上,過點D的切線交直徑AB的延長線于點PDCAB于點C

1)求證:DB平分∠PDC;

2)如果DC = 6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,是直徑,點上一點,點的中點,于點,過點的切線交的延長線于點,連接,分別交于點,連接,交于下列結論:

;

③點的外心,

其中正確結論是_________________(只需填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據(jù)調查結果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調查一共抽取了   名學生;

(2)請將條形統(tǒng)計圖補充完整;

(3)分別求出安全意識為淡薄的學生占被調查學生總數(shù)的百分比、安全意識為很強的學生所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加球類、繪畫類、舞蹈類、音樂類棋類活動的情況進行調查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.

1)參加音樂類活動的學生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;

2)該校學生共600人,則參加棋類活動的人數(shù)約為

3)該班參加舞蹈類活動的四位同學中,有一位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖得方法求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線yax2+bx+30a0)與x軸交于點A10)和點B(﹣3,0),與y軸交于點C

1)求拋物線的解析式;

2)設拋物線的對稱軸與x軸交于點M,請問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由;

3)在拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.

1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJ,IH,IF,IG.試探究線段IHFH之間滿足的數(shù)量關系,并說明理由;
3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關系.

查看答案和解析>>

同步練習冊答案