【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)= (其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)= =b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1. ①求a,b的值;
②若關(guān)于m的不等式組 恰好有3個整數(shù)解,求實數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對任意實數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?
【答案】
(1)解:①根據(jù)題意得:T(1,﹣1)= =﹣2,即a﹣b=﹣2;
T=(4,2)= =1,即2a+b=5,
解得:a=1,b=3;
②根據(jù)題意得: ,
由①得:m≥﹣ ;
由②得:m< ,
∴不等式組的解集為﹣ ≤m< ,
∵不等式組恰好有3個整數(shù)解,即m=0,1,2,
∴2< ≤3,
解得:﹣2≤p<﹣ ;
(2)解:由T(x,y)=T(y,x),得到 = ,
整理得:(x2﹣y2)(2b﹣a)=0,
∵T(x,y)=T(y,x)對任意實數(shù)x,y都成立,
∴2b﹣a=0,即a=2b.
【解析】(1)①已知兩對值代入T中計算求出a與b的值;②根據(jù)題中新定義化簡已知不等式,根據(jù)不等式組恰好有3個整數(shù)解,求出p的范圍即可;(2)由T(x,y)=T(y,x)列出關(guān)系式,整理后即可確定出a與b的關(guān)系式.
【考點精析】關(guān)于本題考查的分式的混合運算和解二元一次方程組,需要了解運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};二元一次方程組:①代入消元法;②加減消元法才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.
(1)求∠MON的大小.
(2)當(dāng)銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有1個紅球、1個黃球和1個白球,這些球除顏色外都相同
(1)攪勻后從袋子中任意摸出1個球,求摸到紅球的概率;
(2)攪勻后從袋子中任意摸出1個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)已知AF=4,CF=2.在(2)條件下,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=36°,
(1)作出AB邊的垂直平分線DE,交AC于點D,交AB于點E,連接BD;
(2)下列結(jié)論正確的是:
① BD平分∠ABC;② AD=BD=BC;③ △BDC的周長等于AB+BC; ④ D點是AC中點;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=a(x2﹣2mx﹣3m2)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點A、B(點A位于點B的左側(cè)),與y軸交于C(0,﹣3),點D在二次函數(shù)的圖象上,CD∥AB,連接AD,過點A作射線AE交二次函數(shù)的圖象于點E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2)求證: 為定值;
(3)設(shè)該二次函數(shù)圖象的頂點為F,探索:在x軸的負(fù)半軸上是否存在點G,連接GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數(shù)式表示該點的橫坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com