【題目】如圖1,已知拋物線軸交于兩點,與軸交于點.

(1)求拋物線的解析式.

(2)如圖2,直線軸交于點,點是軸上一個動點,過點軸,與拋物線交于點,與直線交于點,當點、四個點組成的四邊形是平行四邊形時,求此時點坐標.

(3)如圖3,連接點是拋物線上一個動點,連接,當時,求點的坐標.

【答案】(1)(2),,(3),.

【解析】

1)把AB、C三點坐標分別代入函數(shù)解析式得到三元一次方程組,解方程組即可;

2)設,則,,根據(jù)軸,可表示出GH的長,根據(jù)平行四邊形的性質(zhì)列方程解答即可;

3)分兩種情況討論:①上方,證下方,設軸交于點,過,過軸于,證

(1)、、分別代入y=ax2+bx+c,得:

,

解得,

(2),

∵四個點、、組成平行四邊形

解得:,

,

(3)上方,如圖所示,過,交

證明

,此時在拋物線上,

下方

軸交于點,過,過軸于

證明

,則

,解得

表達式:

聯(lián)立:,解得()

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在甲、乙兩個不透明的盒子中,分別裝有除顏色外其它完全相同的小球,其中,甲盒子裝有2個白球,1個紅球;乙盒子裝有2個紅球,1個白球.

1)將甲盒子搖勻后,隨機取出一個小球,求小球是白色的概率;

2)小華和同桌商定:將兩個盒子搖勻后,各隨機摸出一個小球.若顏色相同,則小華獲勝;若顏色不同,則同桌獲勝,請用列表法或畫出樹狀圖的方法說明誰贏的可能性大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】袋中裝有2個紅球和2個綠球.

1)先從袋中摸出1個球后放回,混合均勻后再摸出1個球,求兩次摸到的球中有1個綠球和1個紅球的概率;

2)先從袋中摸出1個球后不放回,再摸出個球,則兩次摸到的球中有1個綠球和1個紅球的概率是   .(直接填答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°ACBC,將ABC繞點A逆時針旋轉(zhuǎn)60°,得到ADE,連接BE,則∠BED的度數(shù)為( 。

A.100°B.120°C.135°D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2bxc的圖象如圖所示,對稱軸為直線x1.以下結(jié)論:①2a>-b;②4a2bc0;③mamb)>abm是大于1的實數(shù));④3ac0其中正確結(jié)論的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直線上有相距的兩點(點在點的右側(cè)),以為圓心作半徑為的圓,過點作直線.的速度向右移動(點始終在直線上),則與直線______秒時相切.

A.3B.3.5C.34D.33.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為美化中心城區(qū)環(huán)境,政府計劃在長為30米,寬為20米的矩形場地上修建公園.其中要留出寬度相等的三條小路,且兩條與平行,另一條與平行,其余部分建成花圃.

1)若花圃總面積為448平方米,求小路寬為多少米?

2)已知某園林公司修建小路的造價(元)和修建花圃的造價(元)與修建面積(平方米)之間的函數(shù)關系分別為.若要求小路寬度不少于2米且不超過4米,求小路寬為多少米時修建小路和花圃的總造價最低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BAAD,CDDA,垂足分別為A、D.從D點測到B點的仰角α60°,從C點測得B點的仰角β30°,甲建筑物的高AB=30

(1)求甲、乙兩建筑物之間的距離AD

(2)求乙建筑物的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點A(-2,0)B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BC,DB,DC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點BD,MN為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案