【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若點(diǎn)(﹣2,)和(,)在該圖象上,則.
其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).
【答案】②④.
【解析】
試題∵二次函數(shù)開(kāi)口向下,且與y軸的交點(diǎn)在x軸上方,∴a<0,c>0,∵對(duì)稱(chēng)軸為x=1,∴,∴b=﹣2a>0,∴abc<0,故①、③都不正確;
∵當(dāng)x=﹣1時(shí),y<0,∴a﹣b+c<0,故②正確;
由拋物線(xiàn)的對(duì)稱(chēng)性可知拋物線(xiàn)與x軸的另一交點(diǎn)在2和3之間,∴當(dāng)x=2時(shí),y>0,∴4a+2b+c>0,故④正確;
∵拋物線(xiàn)開(kāi)口向下,對(duì)稱(chēng)軸為x=1,∴當(dāng)x<1時(shí),y隨x的增大而增大,∵﹣2<,∴,故⑤不正確;
綜上可知正確的為②④,故答案為:②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(模型建立)
(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直線(xiàn)ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于點(diǎn)D,過(guò)B作BE⊥ED于點(diǎn)E.
求證:△CDA≌△BEC.
(模型運(yùn)用)
(2)如圖2,直線(xiàn)l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線(xiàn)l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至直線(xiàn)l2,求直線(xiàn)l2的函數(shù)表達(dá)式.
(模型遷移)
如圖3,直線(xiàn)l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與x軸正半軸的夾角為30°,點(diǎn)A在直線(xiàn)l上,點(diǎn)P為x軸上一動(dòng)點(diǎn),連接AP,將線(xiàn)段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)30°得到BP,過(guò)點(diǎn)B的直線(xiàn)BC交x軸于點(diǎn)C,∠OCB=30°,點(diǎn)B到x軸的距離為2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線(xiàn),若∠B=40°,∠C=60°.求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫(huà)樹(shù)形圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在二次函數(shù)y=x2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一個(gè)根,求m的值及另一個(gè)根;
(2)當(dāng)m為何值時(shí)方程有兩個(gè)不同的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,將△ABD沿BD(對(duì)稱(chēng)軸)翻折,點(diǎn)A落在點(diǎn)E處,連接AE,CE.
(1)如圖1,當(dāng)∠AEC=90°時(shí),求證:CD=AD;
(2)當(dāng)點(diǎn)E落在BC邊所在直線(xiàn)上,且∠AEC=60°時(shí).
①猜想△BAE是什么三角形并證明;
②試求線(xiàn)段CD、AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖1、2中,已知∠ABC=120°,BD=2,點(diǎn)E為直線(xiàn)BC上的動(dòng)點(diǎn),連接DE,以DE為邊向上作等邊△DEF,使得點(diǎn)F在∠ABC內(nèi)部,連接BF.
(1)如圖1,當(dāng)BD=BE時(shí),∠EBF= ;
(2)如圖2,當(dāng)BD≠BE時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)予以證明,若不成立請(qǐng)說(shuō)明理由;
(3)請(qǐng)直接寫(xiě)出線(xiàn)段BD,BE,BF之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線(xiàn)ON上,點(diǎn)B1、B2、B3…在射線(xiàn)OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若,則△A6B6A7的邊長(zhǎng)為( 。
A.6B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com