【題目】(1)感知:如圖1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知DB,DC數(shù)量關(guān)系為: .
(2)探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,(1)中的結(jié)論是否成立?請作出判斷并給予證明.
(3)應(yīng)用:如圖3,在四邊形ABCD中,DB=DC,∠ABD+∠ACD=180°,∠ABD<90°,DE⊥AB于點(diǎn)E,試判斷AB,AC,BE的數(shù)量關(guān)系,并說明理由.
【答案】(1)BD=CD;(2)成立,證明詳見解析;(3)AB=AC+2BE,證明詳見解析.
【解析】
(1)結(jié)論:BD=CD.只要證明△ADC≌△ADB即可;
(2)結(jié)論成立.如圖②中,作DE⊥AB于E,DF⊥AC于F,只要證明△ADC≌△ADB即可;
(3)如圖③中,連接AD.作DF⊥AC于F.首先證明△DFC≌△DEB(AAS),再證明Rt△ADF≌Rt△ADE(HL)即可解決問題.
解:(1)結(jié)論:DB=DC.
理由:∵∠B+∠C=180°,∠B=90°,
∴∠B=∠C=90°,
∵∠DAC=∠DAB,AD=AD,
∴△ADC≌△ADB.
∴BD=CD.
故答案為BD=CD.
(2)結(jié)論成立.
理由:如圖②中,作DE⊥AB于E,DF⊥AC于F.
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠ABD+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△EDB中,
,
∴△DFC≌△DEB,
∴DC=DB.
(3)結(jié)論:AB=AC+2BE.
理由:如圖③中,連接AD.作DF⊥AC于F.
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
,
∴△DFC≌△DEB(AAS),
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,
,
∴Rt△ADF≌Rt△ADE(HL),
∴AF=AE,
∴AB=AE+BE=AC+CF+BE=AC+2BE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個全等的直角三角形于1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x、y表示三角形的兩條直角邊(x>y),下列四個說法:①,②,③,④。其中說法正確的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD//BC,∠A=90°,E為AB上一點(diǎn),且AE=BC,∠1=∠2.
請說明:(1)△ADE與△BEC全等嗎?請說明理由;
(2)判斷△CDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請在圖中作出△ABC關(guān)于y軸對稱圖形△DEF(A、B、C的對應(yīng)點(diǎn)分別是D、E、F),并直寫出D、E、F的坐標(biāo).D、E、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , );
(2)求四邊形ABED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形ABCDE的各內(nèi)角相等.
(1)求每個內(nèi)角的度數(shù);
(2)連接AC,AD,∠1=∠2,∠3=∠4,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個全等的直角三角形與中間的小正方形拼成的一個大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過,,軸于點(diǎn),四邊形為正方形,點(diǎn)在線段上,點(diǎn)在此拋物線上,且在直線的左側(cè),則正方形的邊長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把長與寬之比為的矩形紙片稱為標(biāo)準(zhǔn)紙.不難發(fā)現(xiàn),將一張標(biāo)準(zhǔn)紙如圖一次又一次對開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙,,,那么把它第次對開后所得標(biāo)準(zhǔn)紙的周長是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com