【題目】如圖,已知AD//BC,∠A=90°EAB上一點,且AE=BC,∠1=2.

請說明:(1ADEBEC全等嗎?請說明理由;

2)判斷CDE的形狀,并說明理由.

【答案】(1)見解析;(2)見解析.

【解析】

1△ADE≌△BEC.先證DE=CE,根據(jù)HL可證明全等;

2△CED是等腰直角三角形. 由(1)可得到∠ADE=∠BEC,然后證明∠CED=90°即可.

1△ADE≌△BEC.理由如下:

證明:∵AD//BC∠A=90°,

∴∠B=∠A=90°,

∴∠1=∠2,

∴DE=CE,

Rt△ADERt△BEC中,

∴Rt△ADE≌Rt△BECHL);

2△CED是等腰直角三角形. 理由如下:

∵Rt△ADE≌Rt△BEC,

∴∠ADE=∠BEC

∴∠A=90°,

∴∠ADE+∠AED=90°

∴∠BEC+∠AED=90°,

∴∠CED=90°,

∵DE=CE,

∴△CED是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m的圖象交y軸于點D,且它與正比例函數(shù)的圖象交于點A2n),設(shè)x軸上有一點P,過點Px軸的垂線(垂線位于點A的右側(cè)),分別交y=x+m的圖象與點B、C.

1)求mn的值;

2)若BC=OD,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.

(1)求證:DF∥AO;

(2)若AC=6,AB=10,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DGBC且平分BCDEABE,DFACF

(1) 說明BECF的理由

(2) 如果ABa,ACb,求AEBE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

如圖,垂直于地面放置的正方形框架,邊長,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子,的長度和為.那么燈泡離地面的高度為________.

不改變圖中燈泡的高度,將兩個邊長為的正方形框架按圖擺放,請計算此時橫向影子的長度和為多少?

個邊長為的正方形按圖擺放,測得橫向影子,的長度和為,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含,的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《見微知著》談到:從一個簡單的經(jīng)典問題出發(fā),從特殊到一般,由簡單到復(fù)雜,從部分到整體,由低維到高維,知識與方法上的類比是探索發(fā)展的重要途徑,是思想閥門發(fā)現(xiàn)新問題、新結(jié)論的重要方法.

例如,已知ab1,求的值.

解:∵ab1,∴a2b21,∴原式

波利亞在《怎樣解題》中指出:當(dāng)你找到第一個藤菇或作出第一個發(fā)現(xiàn)后,再四處看看,他們總是成群生長

請類比以上方法解答:已知ab1,求得的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖形的變換趣味無窮,如圖①,在平面直角坐標(biāo)系中,線段l位于第二象限,A(ab)是線段l上一點,對于線段我們也可以做一些變換:

1)如圖②,將線段ly軸為對稱軸作軸對稱變換得到線段l1,若點A(,3),則點A(,3)關(guān)于y軸為對稱軸的點A1的坐標(biāo)是______.

2)如圖④,將線段l繞坐標(biāo)原點O順時針方向旋轉(zhuǎn)90°得到線段l2,則點A(a,b)對應(yīng)的點A3的坐標(biāo)是什么?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)感知:如圖1,AD平分∠BAC,∠B+C180°,∠B90°,易知DB,DC數(shù)量關(guān)系為:   

2)探究:如圖2AD平分∠BAC,∠ABD+ACD180°,∠ABD90°,(1)中的結(jié)論是否成立?請作出判斷并給予證明.

3)應(yīng)用:如圖3,在四邊形ABCD中,DBDC,∠ABD+ACD180°,∠ABD90°,DEAB于點E,試判斷AB,AC,BE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

同步練習(xí)冊答案