【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點C與點A重合,則折痕EF的長為__________

【答案】

【解析】設(shè)BE=x,則CE=BCBE=16x,

∵沿EF翻折后點C與點A重合,∴AE=CE=16x,

RtABE中,AB2+BE2=AE2,即82+x2=(16x2,解得x=6,∴AE=166=10

由翻折的性質(zhì)得,∠AEF=∠CEF,

∵矩形ABCD的對邊ADBC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,

過點EEHADH,則四邊形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AFAH=106=4,在RtEFH中,EF= = =

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊分別為3,x,7,那么x的取值范圍是(
A.4<x<10
B.1<x<10
C.3<x<7
D.4<x<6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點A(-4,0),B(0,4),且點B是拋物線的頂點.

(1)求直線AB和拋物線的解析式.

(2)點P是直線上方拋物線上的一點,求當(dāng)△PAB面積最大時點P的坐標(biāo).

(3)M是直線AB上一動點,在平面直角坐標(biāo)系內(nèi)是否存在點N,使以O(shè)、B、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意結(jié)合圖形填空:如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D.試說明:AC∥DF.將過程補(bǔ)充完整.

解:∵∠1=∠2(已知)

且∠1=∠3  

∴∠2=∠3(等量代換)

    

∴∠C=∠ABD  

又∵∠C=∠D(已知)

  =  (等量代換 )

∴AC∥DF  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的有( 。

①對頂角相等;②兩直線平行,內(nèi)錯角相等;③兩個銳角對應(yīng)相等的兩個直角三角形全等;④有三個角是直角的四邊形是矩形;⑤平分弦的直徑垂直于弦,并且平分弦所對的。

A. .1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.

1求△AOB的周長;

2設(shè)AQ=t>0,試用含t的代數(shù)式表示點P的坐標(biāo);

3當(dāng)動點P,Q在直線l上運(yùn)動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:

①6a+3b+2c=0;

②當(dāng)m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:m4m3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=-、y=的圖象交于B、A兩點,則∠OAB的大小的變化趨勢為(

A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>-1時,y的值隨x值的增大而增大.

其中正確的結(jié)論有(

A.1個 B.2個

C.3個 D.4個

查看答案和解析>>

同步練習(xí)冊答案