【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tanA=PAD邊上任意一點,連結(jié)PB,將PB繞點P逆時針旋轉(zhuǎn)90°得到線段PQ.若點Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉(zhuǎn)到PQ所掃過的面積____(結(jié)果保留π

【答案】

【解析】

分三種情況:點Q在直線AD上,點Q在直線CD上和點Q在直線BC上,分別求出PB的長度,然后利用扇形的面積公式即可求解.

①當(dāng)點Q在直線AD上時,此時,如圖,

,

,

,

PB旋轉(zhuǎn)到PQ所掃過的面積為 ;

②當(dāng)點Q在直線CD上時,此時,如圖,

過點BAD于點E,過點QAD的延長線于點F

∵四邊形ABCD是平行四邊形,

,

,

中,

由①知,

設(shè),

,

,

解得

,

,

PB旋轉(zhuǎn)到PQ所掃過的面積為

③當(dāng)點Q在直線BC上時,此時,如圖,

過點BAD于點E,過點PBC于點H

∵四邊形ABCD是平行四邊形,

,

,

∴四邊形BGPH是平行四邊形.

,

∴四邊形BGPH是矩形,

,

,

PB旋轉(zhuǎn)到PQ所掃過的面積為 ;

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于的方程有實數(shù)根.

(1)的取值范圍;

(2)若該方程有兩個實數(shù)根,取一個的值,求此時該方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠B=∠C.以AB為直徑的⊙OBC于點D,過點DDEAC于點E

1)求證:DE與⊙O相切;

2)延長DEBA的延長線于點F,若AB8,sinB,求線段FA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形.

1)如圖1,將線段AC繞點A逆時針旋轉(zhuǎn)90°,得到AD,連接BD,∠BAC的平分線交BD于點E,連接CE

①求∠AED的度數(shù);

②用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系(直接寫出結(jié)果).

2)如圖2,將線段AC繞點A順時針旋轉(zhuǎn)90°,得到AD,連接BD,∠BAC的平分線交DB的延長線于點E,連接CE

①依題意補全圖2;

②用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,點DBC邊的中點,以AD為直徑作O,分別與AB,AC交于點EF,過點EEGBCG

1)求證:EGO的切線;

2)若AF=6,O的半徑為5,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點,設(shè)該拋物線與x軸的另一個交點為A,頂點為D,連接CDx軸于點E

1)求該拋物線的函數(shù)表達(dá)式;

2)求該拋物線的對稱軸和D點坐標(biāo);

3)點F,G是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;

4)連接BD,若Py軸上,且∠PBC=DBA+DCB,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對防溺水安全知識的掌握情況,從全校名學(xué)生中隨機抽取部分學(xué)生進(jìn)行測試,并將測試成績(百分制,得分均為整數(shù))進(jìn)行統(tǒng)計分析,繪制了如下不完整的頻數(shù)表和頻數(shù)直方圖.

被抽取的部分學(xué)生安全知識測試成績頻數(shù)表

組別

成績(分)

頻數(shù)(人)

頻率

由圖表中給出的信息回答下列問題:

表中的 ;抽取部分學(xué)生的成績的中位數(shù)在 組;

把上面的頻數(shù)直方圖補充完整;

如果成績達(dá)到分以上(包括)為優(yōu)秀,請估計該校名學(xué)生中成績優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BEDF.下列說法:

對于任意的點E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.

所有正確說法的序號是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB120°,點P為射線OA上一動點(不與點O重合),點C為∠AOB內(nèi)部一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,且點Q恰好落在射線OB上,不與點O重合.

1)依據(jù)題意補全圖1;

2)用等式表示∠CPO與∠CQO的數(shù)量關(guān)系,并證明;

3)連接OC,寫出一個OC的值,使得對于任意點P,總有OP+OQ4,并證明.

查看答案和解析>>

同步練習(xí)冊答案