【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,4),B(4,2),x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是_________

【答案】(2,0)

【解析】

A關(guān)于x軸的對(duì)稱點(diǎn)C,連接ACx軸于D,連接BC交交x軸于P,連接AP,此時(shí)點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,求出C(的坐標(biāo),設(shè)直線CB的解析式是ykxb,把C、B的坐標(biāo)代入求出解析式是yx2,把y0代入求出x即可.

A關(guān)于x軸的對(duì)稱點(diǎn)C,連接ACx軸于D,連接BC交交x軸于P,連接AP,

則此時(shí)APPB最小,

即此時(shí)點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,

A24),

C2,4),

設(shè)直線CB的解析式是ykxb,

C、B的坐標(biāo)代入得:

,

解得:k1,b2

yx2,

y0代入得:0x2,

x2,

P的坐標(biāo)是(2,0),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QCBC=3,則平行四邊形ABCD周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,ECF是等腰直角三角形,其中CE=CFGCDEF的交點(diǎn).

1)求證:BCF≌△DCE;

2)若BC=5,CF=3BFC=90°,求DGGC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的頂點(diǎn)坐標(biāo)分別為,,,把沿直線翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)為,拋物線經(jīng)過(guò)點(diǎn),頂點(diǎn)在直線上.

證明四邊形是菱形,并求點(diǎn)的坐標(biāo);

求拋物線的對(duì)稱軸和函數(shù)表達(dá)式;

在拋物線上是否存在點(diǎn),使得的面積相等?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)x、y軸分別交于A、B兩點(diǎn),xy軸交于C、D兩點(diǎn).

1)求AB、CD的坐標(biāo)(用含k、m的代數(shù)式表示);

2)若,求的值;

3)在(2)的前提下,若的面積為27,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把大小和形狀完全相同的張卡片分成兩組,每組張,分別標(biāo)上、、,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再?gòu)闹须S機(jī)抽取一張.

請(qǐng)用畫樹狀圖的方法求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;

若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;

不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;

若有兩點(diǎn),且該拋物線與線段始終有交點(diǎn),請(qǐng)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=6,BC=8.

1)用直尺和圓規(guī)作∠A的平分線,交BC于點(diǎn)D;(要求:不寫作法,保留作圖痕跡)

2)求SADC: S△ADB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;

(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案