【題目】閱讀下面的對話:

MM:“請幫我稱些梨.

售貨員:您上次買的梨賣沒了,您試一試新進的蘋果,價格雖然比梨貴些,但蘋果營養(yǎng)價

值更高.

MM:“好,我跟上次一樣,也買30元錢.

對比兩次的電腦小票,MM發(fā)現(xiàn):每千克蘋果的價格是梨的1.5倍,蘋果的重量比梨輕2.5

千克.

根據(jù)上面的對話和MM發(fā)現(xiàn),分別求出蘋果和梨的單價.

【答案】梨的單價4元,蘋果的單價6元.

【解析】

根據(jù)題目中的每千克蘋果的價格是梨的1.5可得出相等關(guān)系,所以只要表示出原來與現(xiàn)在相差的千克數(shù)即可列出方程.

解:設(shè)梨x元一千克,蘋果1.5x元一千克,根據(jù)題意列方程得

解得x=4,1.5x=6,

經(jīng)檢驗x=4是方程的解,

即梨的單價4元,蘋果的單價6元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,對角線AC、BD交于點O,過點O作直線EF分別交線段AD、BC于點E、F.
(1)根據(jù)題意,畫出圖形,并標上正確的字母;
(2)求證:DE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行“社會主義核心價值觀”知識比賽活動,全體學(xué)生都參加比賽,學(xué)校對參賽學(xué)生均給與表彰,并設(shè)置一、二、三等獎和紀念獎共四個獎項,賽后將獲獎情況繪制成如下所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給的信息,解答下列問題:
(1)該校共有名學(xué)生;
(2)在圖①中,“三等獎”所對應(yīng)扇形的圓心角度數(shù)是
(3)將圖②補充完整;
(4)從該校參加本次比賽活動的學(xué)生中隨機抽查一名.求抽到獲得一等獎的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD和CD分別平分ABC的內(nèi)角EBA和外角ECA,BD交AC于F,連接AD.

(1)求證:BDC=BAC

(2)若AB=AC,請判斷ABD的形狀,并證明你的結(jié)論;

(3)在(2)的條件下,若AF=BF,求EBA的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐徐州號高鐵A復(fù)興號高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥ABR,PS⊥ACS,則四個結(jié)論P∠A的平分線上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正確的是(  。

A. ①② B. ①②④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=x2﹣3x+m,直線l:y=kx(k>0),當k=1時,拋物線C與直線l只有一個公共點.

(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點A,B,直線l與直線l1:y=﹣3x+b交于點P,且 + = ,求b的值;
(3)在(2)的條件下,設(shè)直線l1與y軸交于點Q,問:是否在實數(shù)k使SAPQ=SBPQ?若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測得塑像底部B處的俯角為18°48′,測得塑像頂部A處的仰角為45°,點D在觀測點C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為米(參考數(shù)據(jù):tan78°12′≈4.8).

查看答案和解析>>

同步練習(xí)冊答案