【題目】RtABC中,∠BAC90°,AD是△ABC的中線,∠ADC45°,把△ADC沿AD對折,使點C落在C的位置,CDAB于點Q,則的值為( 。

A.B.C.D.

【答案】A

【解析】

根據(jù)折疊得到對應線段相等,對應角相等,根據(jù)直角三角形的斜邊中線等于斜邊一半,可得出ADDCBD,ACAC′,∠ADC=∠ADC′=45°,CDCD,進而求出∠C、∠B的度數(shù),求出其他角的度數(shù),可得AQAC,將轉(zhuǎn)化為,再由相似三角形和等腰直角三角形的邊角關系得出答案.

解:如圖,過點AAEBC,垂足為E

∵∠ADC45°,

∴△ADE是等腰直角三角形,即AEDEAD,

Rt△ABC中,

∵∠BAC90°,ADABC的中線,

ADCDBD,

由折疊得:ACAC,ADCADC45°,CDCD

∴∠CDC45°+45°90°,

∴∠DACDCA=(180°45°÷267.5°CAD,

∴∠B90°CCAE22.5°,BQD90°BCQA67.5°

ACAQAC,

AEC∽△BDQ得:

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、EBC上的點,AD平分∠BAECA=CD

1)求證:∠CAE=∠B;

2)若∠B50°,∠C3DAB,求∠C的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由面積為1的正方形按一定的規(guī)律組成的,其中,第1個圖形中面積為1的正方形有9個,第2個圖形中面積為1的正方形有14個,……,按此規(guī)律,則第幾個圖形中面積為1的正方形的個數(shù)為2019個(

A.400B.401C.402D.403

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10盒紅色的筆芯中混放了若干支黑色的筆芯,每盒20支筆芯,每盒中混放入的黑色筆芯數(shù)如下表:

黑色筆芯數(shù)

0

1

4

5

6

盒數(shù)

2

4

1

2

1

下列結(jié)論:

①黑色筆芯一共有16支;

②從中隨機取一盒,盒中紅色筆芯數(shù)不低于14是必然事件;

③從中隨機取一盒,盒中黑色筆芯數(shù)不超過4的概率為0.7

④將10盒筆芯混在一起,從中隨機抽取一支筆芯,恰好是黑色的概率是0.12

其中正確的結(jié)論有()

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,且,交于點

1)求證:的切線;

2)若,求證:的平分線;

3)在(2)的條件下,延長,交與點,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求共抽取了多少名學生的征文;

2)將上面的條形統(tǒng)計圖補充完整;

3)在扇形統(tǒng)計圖中,愛國主題所對應的圓心角是多少;

4)如果該校七年級共有名學生,請估計該校選擇以友善為主題的七年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C⊙O的直徑AB延長線上的一點,且有BO=BD=BC

1)求證:CD⊙O的切線;

2)若半徑OB=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十三五以來,山西省共解決372個村、35.8萬農(nóng)村人口的飲水型氟超標問題,讓農(nóng)村群眾真正喝上干凈水、放心水、安全水.某公司抓住商機,根據(jù)市場需求代理,兩種型號的凈水器,已知每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.

1)求每臺型,型凈水器的進價各是多少元?

2)該公司計劃購進,兩種型號的凈水器共55臺進行試銷,其中型凈水器為臺,購買兩種凈水器的總資金不超過10.8萬元.則最多可購進型號凈水器多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分6分一只不透明的袋子中裝有1個白球、1個藍球和2個紅球,這些球除顏色外都相同

(1)從袋中隨機摸出1個球,摸出紅球的概率為 ;

(2)從袋中隨機摸出1個球不放回后,再從袋中余下的3個球中隨機摸出1個球,球兩次摸到的球顏色不相同的概率

查看答案和解析>>

同步練習冊答案