【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點.
(1)求、、三點坐標(biāo);
(2)求過、兩點的一次函數(shù)的解析式;
(3)如果是線段上的動點,試求的面積與之間的關(guān)系式.
【答案】(1)、、;(2)y=-x+6;(3)S=-2x+12(0<x<6)
【解析】
(1)拋物線的解析式中,令x=0可求得C點坐標(biāo),令y=0可求得A、B的坐標(biāo);
(2)已知了B、C的坐標(biāo),用待定系數(shù)法求解即可;
(3)根據(jù)直線BC的解析式可用x表示出P點的縱坐標(biāo),以OA為底,P點縱坐標(biāo)的絕對值為高即可得到的面積,由此可求得S與x的函數(shù)關(guān)系式;
解:(1)當(dāng)時,,解得:,,
點的坐標(biāo)為,點的坐標(biāo)為;
當(dāng)時,,點的坐標(biāo)為.
(2)設(shè)過,兩點的一次函數(shù)的解析式為,
將,代入,得:
,解得:,
過,兩點的一次函數(shù)的解析式為.
(3)過點作軸,垂足為,如圖所示.
點的坐標(biāo)為,,
點的坐標(biāo)為,,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(2)存在.證明方法類似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時, 的值最小,最小值為0.5,由此即可解決問題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時, 的值最小,最小值為0.5,∴k=0.5.
點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考?碱}型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于點F.
(1)試求該拋物線表達(dá)式;
(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標(biāo);
(3)如圖(2),過點P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當(dāng)P點橫坐標(biāo)為何值時,使得以點P、C、H為頂點的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙C經(jīng)過原點且與兩坐標(biāo)軸分別交于A、B兩點,點A的坐標(biāo)為(0,4),M是圓上一點,∠BMO=120°,則⊙C的半徑為____,圓心C的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣6x+m滿足以下條件:當(dāng)﹣2<x<﹣1時,它的圖象位于x軸的下方;當(dāng)8<x<9時,它的圖象位于x軸的上方,則m的值為( 。
A.27B.9C.﹣7D.﹣16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1).
(1)以O點為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點的對應(yīng)點B′的坐標(biāo)是 ;C點的對應(yīng)點C′的坐標(biāo)是 ;
(3)在BC上有一點P(x,y),按(1)的方式得到的對應(yīng)點P′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,的頂點均在格點上,三個頂點的坐標(biāo)分別為.
(1)將關(guān)于軸作軸對稱變換得,則點的坐標(biāo)為______.
(2)將繞原點按逆時針方向旋轉(zhuǎn)得,則點的坐標(biāo)為______.
(3)在(1)(2)的基礎(chǔ)上,圖中的,是中心對稱圖形,對稱中心的坐標(biāo)為______.
(4)若以點、、、為頂點的四邊形為菱形,直接寫出點的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場部分平面圖如圖所示,C,E,A在同一直線上,D,E,B在同一直線上,測得A處與E處的距離為80 m,C處與D處的距離為34 m,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設(shè)AD的長為m,DC的長為m。
(1)求與之間的函數(shù)關(guān)系式;
(2)根據(jù)實際情況,對于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請說明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com