【題目】已知向量 ,向量 如圖表示,則(
A.?λ>0,使得
B.?λ>0,使得< , >=60°
C.?λ<0,使得< , >=30°
D.?λ>0,使得 為不為0的常數(shù))

【答案】D
【解析】解:向量 ,向由圖可得 =(5,5)﹣(1,2)=(4,3). 對于A,若 ,則(1,λ)(4,3)=0,解得 ,故錯;
對于B,若< , >=60°,則 ,得11λ2+96λ+39=0,方程無解,故錯;
對于C,若< , >=30°,則 ,得39λ2﹣96λ+11=0,方程無解,故錯;
對于D,若 為不為0的常數(shù)),則(1,λ)=c(4,3),解得λ= ,故正確;
故選:D
【考點精析】掌握平面向量的基本定理及其意義是解答本題的根本,需要知道如果、是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且只有一對實數(shù)、,使

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l的極坐標方程為ρsin(θ+ )= ,圓C的參數(shù)方程為: (其中θ為參數(shù)).
(1)判斷直線l與圓C的位置關系;
(2)若橢圓的參數(shù)方程為 (φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與拋物線的交點為Q,且

(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點,與圓x2+(y﹣1)2=1相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作我校的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓ρ=4cosθ與圓ρ=2sinθ交于O,A兩點. (Ⅰ)求直線OA的斜率;
(Ⅱ)過O點作OA的垂線分別交兩圓于點B,C,求|BC|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研,人社部從網上年齡在15~65歲的人群中隨機調查100人,調查數(shù)據的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下

年齡

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延遲退休”的人數(shù)

15

5

15

28

17


(1)由以上統(tǒng)計數(shù)據填2×2列聯(lián)表,并判斷是否95%的把握認為以45歲為界點的不同人群對“延遲退休年齡政策”的支持有差異;

45歲以下

45歲以上

總計

支持

不支持

總計


(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動,現(xiàn)從這8人中隨機抽2人. ①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當a=1時,解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 x軸的正半軸于點A , 點B( ,a)在拋物線上,點C是拋物線對稱軸上的一點,連接AB、BC , 以AB、BC為鄰邊作□ABCD , 記點C縱坐標為n ,

(1)求a的值及點A的坐標;
(2)當點D恰好落在拋物線上時,求n的值;
(3) 記CD與拋物線的交點為E,連接AE,BE,當三角形AEB的面積為7時,n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=x﹣6與x軸、y軸分別交于A、B兩點,點E從B點出發(fā),以每秒1個單位長度的速度沿線段BO向O點移動(不考慮點E與B、O兩點重合的情況),過點E作EF∥AB,交x軸于點F,將四邊形ABEF沿直線EF折疊后,與點A對應的點記作點C,與點B對應的點記作點D,得到四邊形CDEF,設點E的運動時間為t秒.

(1)畫出當t=2時,四邊形ABEF沿直線EF折疊后的四邊形CDEF(不寫畫法)
(2)在點E運動過程中,CD交x軸于點G,交y軸于點H,試探究t為何值時,△CGF的面積為;
(3)設四邊形CDEF落在第一象限內的圖形面積為S,求S關于t的函數(shù)解析式,并求出S的最大值.

查看答案和解析>>

同步練習冊答案