【題目】直線y=x﹣6與x軸、y軸分別交于A、B兩點,點E從B點出發(fā),以每秒1個單位長度的速度沿線段BO向O點移動(不考慮點E與B、O兩點重合的情況),過點E作EF∥AB,交x軸于點F,將四邊形ABEF沿直線EF折疊后,與點A對應(yīng)的點記作點C,與點B對應(yīng)的點記作點D,得到四邊形CDEF,設(shè)點E的運動時間為t秒.

(1)畫出當(dāng)t=2時,四邊形ABEF沿直線EF折疊后的四邊形CDEF(不寫畫法)
(2)在點E運動過程中,CD交x軸于點G,交y軸于點H,試探究t為何值時,△CGF的面積為;
(3)設(shè)四邊形CDEF落在第一象限內(nèi)的圖形面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值.

【答案】
(1)

解:如圖1:


(2)

解:如圖2:

由折疊的性質(zhì),得∠C=∠A=∠COA=45°,AF=BE=CF=t,

SCFG=CFFG=t2=,

解得t=,t=﹣(不符合題意,舍);


(3)

解:

分兩種情況討論:

①當(dāng)0<t≤3時,如圖2:

四邊形DCEF落在第一象限內(nèi)的圖形是△DFG,

∴S=t2

∵S=t2,在t>0時,S隨t增大而增大,

∴t=3時,S最大=;

②當(dāng)3<t<6時,如圖2:

四邊形DCEF落在第一象限內(nèi)的圖形是四邊形DHOF,

∴S四邊形CHOF=SCGF﹣SHGO

∴S=t22(2t﹣6)2

=﹣t2+12t﹣18

=﹣(t﹣4)2+6,

∵a=﹣<0,

∴S有最大值,

∴當(dāng)t=4時,S最大=6,

綜上所述,當(dāng)S=4時,S最大值為6.


【解析】(1)根據(jù)軸對稱的性質(zhì),可得CDEF與ABEF全等,根據(jù)全等,可得答案;
(2)根據(jù)軸對稱,可得△CGF,根據(jù)三角形的面積公式,可得答案;
(3)分類討論:當(dāng)0<t≤3時,根據(jù)三角形的面積公式,可得答案;當(dāng)3<t<6時,根據(jù)圖形割補法,可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,向量 如圖表示,則(
A.?λ>0,使得
B.?λ>0,使得< , >=60°
C.?λ<0,使得< , >=30°
D.?λ>0,使得 為不為0的常數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個大的矩形ABEF,現(xiàn)將小矩形CEFD繞點C順時針旋轉(zhuǎn),得到矩形CE′F′D′,旋轉(zhuǎn)角為α.

(1)當(dāng)點D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC的中點,且0°<α<90°,求證:GD′=E′D;

(3)小矩形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.

(1)求證:△ADE≌△CBF
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,建筑物AB后有一座假山,其坡度為i=1:,山坡上E點處有一涼亭,測得假山坡腳C與建筑物水平距離BC=25米,與涼亭距離CE=20米,某人從建筑物頂端測得E點的俯角為45°,求建筑物AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某養(yǎng)殖場計劃購買甲、乙兩種魚苗共700尾,甲種魚苗每尾3元,乙種魚苗每尾5元,相關(guān)資料表明:甲、乙兩種魚苗的成活率分別為85%和90%
(1)若購買這兩種魚苗共用去2500元,則甲、乙兩種魚苗各購買多少尾?
(2)若要使這批魚苗的總成活率不低于88%,則甲種魚苗至多購買多少尾?
(3)設(shè)甲種魚苗購買m尾,購買魚苗的費用為w元,列出w與x之間的函數(shù)關(guān)系式,運用一次函數(shù)的性質(zhì)解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.

(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當(dāng)△PCD的面積最大時,Q從點P出發(fā),先沿適當(dāng)?shù)穆窂竭\動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y(tǒng)軸上的點N處,最后沿適當(dāng)?shù)穆窂竭\動到點A處停止.當(dāng)點Q的運動路徑最短時,求點N的坐標(biāo)及點Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應(yīng)點為點E′,點A的對應(yīng)點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應(yīng)點分別為點A1 , C1 , 且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案