【題目】如圖,把△ABC向上平移4個的那位長度,再向右平移3個單位長度,得到△A′B′C′.

(1)在圖中畫出△A′B′C′;
(2)連接A′A、C′C,求四邊形A′AC′C的面積.

【答案】
(1)解:如圖所示:△A′B′C′即為所求;


(2)解:S四邊形A'AC'C=SA′CC′+SA′CA= ×7×3+ ×7×3=21.
【解析】(1)根據(jù)圖形平移的性質(zhì)畫出平移后的△A′B′C′即可;
(2)利用S四邊形A'AC'C=S△A′CC′+S△A′CA即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用坐標與圖形變化-平移的相關(guān)知識可以得到問題的答案,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】把拋物線y=﹣2x2的圖象先向上平移3個單位,再向右平移1個單位,則平移后拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線經(jīng)過原點O與點A(6,0)兩點,過點A作ACx軸,交直線y=2x﹣2于點C,且直線y=2x﹣2與x軸交于點D.

(1)求拋物線的解析式,并求出點C和點D的坐標;

(2)求點A關(guān)于直線y=2x﹣2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;

(3)點P(x,y)是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點Q,設線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線交x軸于A,B兩點,交y軸于點C(0,3),tanOAC=

(1)求拋物線的解析式;

(2)點H是線段AC上任意一點,過H作直線HNx軸于點N,交拋物線于點P,求線段PH的最大值;

(3)點M是拋物線上任意一點,連接CM,以CM為邊作正方形CMEF,是否存在點M使點E恰好落在對稱軸上?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昆明在修建地鐵3號線的過程中,要打通隧道3600米,為加快城市建設,實際工作效率是原計劃工作效率的1.8倍,結(jié)果提前20天完成了任務.問原計劃每天打通隧道多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AD是角平分線,BE平分ABC交AD于點E,點O在AB上,以OB為半徑的O經(jīng)過點E,交AB于點F

(1)求證:AD是O的切線;

(2)若AC=4,C=30°,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在證明“△ABC內(nèi)角和等于180°”時,延長BC至D,過點C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,這個證明方法體現(xiàn)的數(shù)學思想是(
A.數(shù)形結(jié)合
B.特殊到一般
C.一般到特殊
D.轉(zhuǎn)化

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標;
(2)若點P是反比例函數(shù)圖象上的一點且SPAD=S正方形ABCD;求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點M(1,a)和點N(﹣2,b)是一次函數(shù)y=﹣3x+1圖象上的兩點,則ab的大小關(guān)系是_____

查看答案和解析>>

同步練習冊答案