【題目】用一根長22cm的鐵絲,
(1)能否圍成面積是30cm2的矩形?如果能,求出矩形的邊長,如果不能說明理由;
(2)能否圍成面積是32cm2的矩形?如果能,求出矩形的邊長,如果不能說明理由;
(3)請?zhí)剿髂車傻木匦蚊娣e的最大值是多少 cm2?
【答案】(1)能圍成面積是30cm2的矩形,此時長和寬分別為6cm、5cm;(2)不能圍成面積是32cm2的矩形,理由詳見解析;(3)
【解析】
(1)設(shè)當(dāng)矩形的一邊長為時,由矩形的面積公式列出方程,解方程即可;
(2)同(1)列出方程,由判別式,即可得出結(jié)果;
(3)設(shè)當(dāng)矩形的一邊長為時,面積為.由矩形的面積公式和配方法得出,由偶次方的性質(zhì),即可得出結(jié)果.
解:(1)設(shè)當(dāng)矩形的一邊長為x cm時,
根據(jù)題意得:x(11﹣x)=30,
整理得:x2﹣11x+30=0,
解得:x=5或x=6,
當(dāng)x=5時,11﹣x=6;
當(dāng)x=6時,11﹣x=5;
即能圍成面積是30cm2的矩形,此時長和寬分別為6cm、5cm;
(2)根據(jù)題意得:x(11﹣x)=32,
整理得:x2﹣11x+32=0,
∵△=(﹣11)2﹣4×1×32<0,
方程無解,因此不能圍成面積是32cm2的矩形;
(3)設(shè)當(dāng)矩形的一邊長為時,面積為.
由題意得:
,
,
.
當(dāng)時,有最大值,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知二次函數(shù),請你化成的形式_______,并在直角坐標(biāo)系中畫出的圖像(列表、描點、連線);
(2)如果是函數(shù)圖像上的兩點,且,則________(填,或)
(3)若函數(shù)的圖像與軸沒有交點,根據(jù)所畫圖像推斷,實數(shù)的取值范圍為__________.
解:①、列表
… | 0 | … | |||||
… | 0 | 0 | … |
②描點、連線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點為,且經(jīng)過點,與軸分別交于、兩點.
(1)求直線和拋物線的函數(shù)表達(dá)式;
(2)如圖,點是拋物線上的一個動點,且在直線的下方,過點作軸的平行線與直線交于點,求的最大值;
(3)如圖,過點的直線交軸于點,且軸,點是拋物線上、之間的一個動點,直線、與分別交于、兩點.當(dāng)點運(yùn)動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若方程x2+(2a-1)x+a2=0與方程2x2-(4a+1)x+2a-1=0中至多有一個方程有實數(shù)根,則a的取值范圍是( 。
A.a>B.a<-C.≤a≤D.a<-或a>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當(dāng)圓O與射線BD相切時,點E停止移動,在點E移動的過程中,
①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;
②求點G移動路線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名戰(zhàn)士在相同條件下各射擊10次,每次命中的環(huán)數(shù)分別是:
甲:8,6,7,8,6,5,9,10,4,7 乙:6,7,7,6,7,8,7,9,8,5
(1)分別求出兩組數(shù)據(jù)的方差和標(biāo)準(zhǔn)差;
(2)根據(jù)計算結(jié)果,評價一下兩名戰(zhàn)士的射擊情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結(jié)論正確的是( 。
A.b2﹣4ac<0
B.2a+b=0
C.a+b+c<0
D.關(guān)于x的方程ax2+bx+c=﹣1有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于點,與軸的交點在和之間(不包括這兩點),對稱軸為直線.下列結(jié)論:①;②;③;④;⑤.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=30°,點O為邊AN上一點,以O為圓心,4為半徑
作⊙O交AN于D、E兩點.
⑴ 當(dāng)⊙O與AM相切時,求AD的長;
⑵ 如果AD=2,那么AM與⊙O又會有怎樣的位置關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com