【題目】在平面直角坐標系中,已知直線l:y=﹣x+2交x軸于點A,交y軸于點B,直線l上的點P(m,n)在第一象限內(nèi),設△AOP的面積是S.
(1)寫出S與m之間的函數(shù)表達式,并寫出m的取值范圍.
(2)當S=3時,求點P的坐標.
(3)若直線OP平分△AOB的面積,求點P的坐標.
【答案】(1)S=4﹣m,0<m<4;(2)(1,);(3)(2,1)
【解析】
(1)根據(jù)點A、P的坐標求得△AOP的底邊與高線的長度;然后根據(jù)三角形的面積公式即可求得S與m的函數(shù)關(guān)系式;
(2)將S=3代入(1)中所求的式子,即可求出點P的坐標;
(3)由直線OP平分△AOB的面積,可知OP為△AOB的中線,點P為AB的中點,根據(jù)中點坐標公式即可求解.
解:∵直線l:y=﹣x+2交x軸于點A,交y軸于點B,
∴A(4,0),B(0,2),
∵P(m,n)
∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.
∵點P(m,n)在第一象限內(nèi),∴m+2n=4,
∴,
解得0<m<4;
(2)當S=3時,4﹣m=3,
解得m=1,
此時y=(4﹣1)=,
故點P的坐標為(1,);
(3)若直線OP平分△AOB的面積,則點P為AB的中點.
∵A(4,0),B(0,2),
∴點P的坐標為(2,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點D,交AC于點E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52× = ×25
② ×396=693× ;
(2)設這類等式左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含a,b),并證明;
(3)若(2)中a,b表示一個兩位數(shù),例如a=11,b=22,則1122×223311=113322×2211,請寫出表示這類“數(shù)字對稱等式”一般規(guī)律的式子(含a,b),并寫出a+b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y=﹣2x+2交x軸于點A,交y軸于點B,直線l2:y=x+1交x軸于點D,交y軸于點C,直線l1、l2交于點M.
(1)點M坐標為_____;
(2)若點E在y軸上,且△BME是以BM為一腰的等腰三角形,則E點坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某單位準備組織員工到武夷山風景區(qū)旅游,旅行社給出了如下收費標準(如圖所示):
設參加旅游的員工人數(shù)為x人.
(1)當25<x<40時,人均費用為 元,當x≥40時,人均費用為 元;
(2)該單位共支付給旅行社旅游費用27000元,請問這次參加旅游的員工人數(shù)共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中.
(1)作出關(guān)于對稱的圖形.
(2)說明,可以由經(jīng)過怎樣的平移變換得到?
(3)以所在的直線為軸,的中點為坐標原點,建立直角坐標系,試在軸上找一點,使得最小(保留找點的作圖痕跡,描出點的位置,并寫出點的坐標).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個村莊A、B在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送自來水.鋪設水管的工程費用為每千米20000元,請你在CD上選擇水廠位置O,使鋪設水管的費用最省,并求出鋪設水管的總費用W.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若∠BEC=30°,求證:以BC,BE,AC邊的三角形為直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com