【題目】已知關(guān)于x的一元二次方程.
(1)如果該方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,當(dāng)關(guān)于x的拋物線與x軸交點(diǎn)的橫坐標(biāo)都是整數(shù),且時(shí),求m的整數(shù)值.
【答案】(1)m≠0和m≠﹣3;(2)﹣1或3.
【解析】
試題(1)根據(jù)一元二次方程二次項(xiàng)系數(shù)不為0和一元二次方程根的判別式大于0求解即可.
(2)根據(jù)拋物線與x軸交點(diǎn)的橫坐標(biāo)就是一元二次方程的根求出方程的根,再根據(jù)根是小于4的整數(shù)求得m的整數(shù)值.
(1)由題意 m≠ 0,
∵方程有兩個(gè)不相等的實(shí)數(shù)根,∴△>0.
即.得 m≠﹣3.
∴m的取值范圍為m≠0和m≠﹣3.
(2)設(shè)y=0,則.
∵,∴.∴,.
當(dāng)是整數(shù)時(shí),可得m=1或m=-1或m=3.
∵,∴m的值為﹣1或3 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x-3與坐標(biāo)軸交于A、B兩點(diǎn),拋物線經(jīng)過點(diǎn)B,與直線y=x-3交于點(diǎn)E(8,5),且與x軸交于C,D兩點(diǎn).
(1)求拋物線的解析式;
(2)拋物線上有一點(diǎn)M,當(dāng)∠MBE=75°時(shí),求點(diǎn)M的橫坐標(biāo);
(3)點(diǎn)P在拋物線上,在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使得以點(diǎn)P,Q,B,C為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(﹣5,0)、(﹣2,0).點(diǎn)P在拋物線y=﹣2x2+4x+8上,設(shè)點(diǎn)P的橫坐標(biāo)為m.當(dāng)0≤m≤3時(shí),△PAB的面積S的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與,軸交于,兩點(diǎn),正比例函數(shù)的圖象與交于點(diǎn).
(1)求的值及的解析式;
(2)求的值;
(3)一次函數(shù)的圖象為,且,,不能圍成三角形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租憑公司要購買轎車和面包車共輛,其中轎車最少要購買輛,轎車每輛萬元,購頭面包車每輛萬元,公司可投入的購車資金不超過萬元.
(1)符合公司要求的購買方案有幾種?請(qǐng)說明理由;
(2)如果每輛轎車日租金為元,每輛面包車日租金為元,假設(shè)新購買的這輛汽車每日都可以全部租出,公司希望輛汽車的日租金最高,那么應(yīng)該選擇以上的哪種購買方案?且日租金最高為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里有5個(gè)小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù),再從剩下的球中隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù).
(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.
(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點(diǎn),直接寫出該點(diǎn)在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;
(3)當(dāng)線段BE為何值時(shí),線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長(zhǎng)為1的小正方形組成的方格圖.
(1)請(qǐng)?jiān)诜礁駡D中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為(3,3),點(diǎn)的坐標(biāo)為(1,0);
(2)點(diǎn)的坐標(biāo)為(4,1),在圖中找到點(diǎn),順次連接點(diǎn)、、,并作出關(guān)于軸對(duì)稱的圖形;
(3)中邊邊上的高為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書法、繪畫。要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動(dòng)。以九年級(jí)(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖。請(qǐng)你結(jié)合圖示所給出的信息解答下列問題。
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計(jì)圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級(jí)學(xué)生有600人,請(qǐng)你估計(jì)這次藝術(shù)活動(dòng)中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com