【題目】如圖是由邊長為1的小正方形組成的方格圖.
(1)請?jiān)诜礁駡D中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為(3,3),點(diǎn)的坐標(biāo)為(1,0);
(2)點(diǎn)的坐標(biāo)為(4,1),在圖中找到點(diǎn),順次連接點(diǎn)、、,并作出關(guān)于軸對稱的圖形;
(3)中邊邊上的高為 .
【答案】(1)見詳解圖;(2)見詳解圖;(3)
【解析】
(1)根據(jù)A、B兩點(diǎn)的坐標(biāo)建立平面直角坐標(biāo)系即可;
(2)找出C點(diǎn)坐標(biāo),順次連接點(diǎn)A、B、C,并作出△ABC關(guān)于y軸對稱的圖形△ABC
(3)設(shè)BC邊上的高為,根據(jù)三角形的面積公式構(gòu)建方程即可解決問題.
解:(1)要使點(diǎn)的坐標(biāo)為(3,3),點(diǎn)的坐標(biāo)為(1,0),在方格圖中建立平面直角坐標(biāo)系,如下圖,
(2)在如圖的平面直角坐標(biāo)系中找出點(diǎn)C(4,1),順次連接AB、BC、CA,
找出A、B、C三點(diǎn)關(guān)于y軸對稱的點(diǎn)A(-3,3)、B(-1,0)、C(-4,1),再順次連接即得△ABC;
(3)根據(jù)題意和圖形得:
∵BC=∴=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別在平行四邊形ABCD邊BC和AD上(E、F都不與兩端點(diǎn)重合),連結(jié)AE、DE、BF、CF,其中AE和BF交于點(diǎn)G,DE和CF交于點(diǎn)H.令,.若,則圖中有_______個(gè)平行四邊形(不添加別的輔助線);若,且四邊形ABCD的面積為28,則四邊形FGEH的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)如果該方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,當(dāng)關(guān)于x的拋物線與x軸交點(diǎn)的橫坐標(biāo)都是整數(shù),且時(shí),求m的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點(diǎn)M,點(diǎn)C是BM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點(diǎn) O 是邊 AC 上一個(gè)動(dòng)點(diǎn),過 O 作直線 MN∥BC,設(shè) MN 交∠ACB 的平分線于點(diǎn) E,交∠ACB 的外角平分線于點(diǎn) F.
(1)求證:OE=OF;
(2)當(dāng)點(diǎn) O 在邊 AC 上運(yùn)動(dòng)到什么位置時(shí),四邊形 AECF 是矩形?并說明理由.
(3)若 AC 邊上存在點(diǎn) O,使四邊形 AECF 是正方形,猜想△ABC 的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB = AC,AB的垂直平分線DE交AC于D,交AB于E.
(1)若AB = AC = 8cm,BC = 6cm,求△BCD的周長;
(2)若∠CBD = 30°,試求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com