【題目】某校辦工廠現(xiàn)在年產(chǎn)值是15萬元,計(jì)劃以后每年增加2萬元.
(1)寫出年產(chǎn)值(萬元)與年數(shù)之間的關(guān)系式.
(2)用表格表示當(dāng)從0變化到6(每次增加1)的對(duì)應(yīng)值.
(3)求5年后的年產(chǎn)值.
【答案】(1)y=15+2x;(2)見解析;(3)25
【解析】
(1)根據(jù)題意,k=2,b=15,根據(jù)一次函數(shù)解析式的形式寫出即可得到答案;
(2)分別求出當(dāng)x=0、1、2、3、4、5、6時(shí)的y的值,再填入表格即可得到答案;
(3)把x=5代入函數(shù)解析式,再計(jì)算求出y的值即可得到答案.
解:(1)根據(jù)某校辦工廠現(xiàn)在年產(chǎn)值是15萬元,計(jì)劃以后每年增加2萬元可得,
k=2,b=15,
∴關(guān)系式為:y=2x+15;
(2)根據(jù)產(chǎn)值與年數(shù)之間的關(guān)系式y=2x+15,可列的如下圖:
(3)當(dāng)x=5時(shí),y=2×5+15=25,
∴5年后的年產(chǎn)值是25萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1菱形ABCD,∠ABC=60°,邊長為 3,在菱形內(nèi)作等邊三角形△AEF,邊長為2 ,點(diǎn)E,點(diǎn)F,分別在AB,AC上,以A為旋轉(zhuǎn)中心將△AEF順時(shí)針轉(zhuǎn)動(dòng),旋轉(zhuǎn)角為α,如圖2
(1)在圖2中證明BE=CF;
(2)若∠BAE=45°,求CF的長度;
(3)當(dāng)CF= 時(shí),直接寫出旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ACB中,C為直角頂點(diǎn),∠ABC=25°,O為斜邊AB的中點(diǎn),將OA繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<180°)到OP.當(dāng)△BCP為等腰三角形時(shí),α的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是反映兩個(gè)變量關(guān)系的圖,下列的四個(gè)情境比較合適該圖的是( )
A.一杯熱水放在桌子上,它的水溫與時(shí)間的關(guān)系
B.一輛汽車從起動(dòng)到勻速行駛,速度與時(shí)間的關(guān)系
C.一架飛機(jī)從起飛到降落的速度與時(shí)晨的關(guān)系
D.踢出的足球的速度與時(shí)間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為順利通過“國家生態(tài)文明示范區(qū)”驗(yàn)收,璧山政府?dāng)M對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管道等公用設(shè)施全面更新改造.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)市政府決定由甲、乙共同完成此項(xiàng)工程.若甲工程隊(duì)每天的工程費(fèi)用是4.5萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,若工程費(fèi)用不超過72萬元,則甲工程隊(duì)最少工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,求證:DECD=DFBE
(2)D為BC中點(diǎn)如圖2,連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最近,“校園安全”受到全社會(huì)的廣泛關(guān)注,重慶八中對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為度;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若達(dá)到“了解”程度的人中有1名男生2名女生,達(dá)到“不了解”的程度的人中有1名男生和1名女生,若分別從達(dá)到“了解”程度和“不了解”的人中分別抽取1人參加校園安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x﹣3)2+ 過點(diǎn)C(0,4),頂點(diǎn)為M,與x軸交于A、B兩點(diǎn).如圖所示以AB為直徑作圓,記作⊙D,下列結(jié)論:
①拋物線的對(duì)稱軸是直線x=3;
②點(diǎn)C在⊙D外;
③在拋物線上存在一點(diǎn)E,能使四邊形ADEC為平行四邊形;
④直線CM與⊙D相切.
正確的結(jié)論是( )
A.①③
B.①④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作BE的平行線與線段ED的延長線交于點(diǎn)F,連接AE,CF.
(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com