【題目】如圖,要測量河岸相對的兩點A、B之間的距離,先從B處出發(fā)與AB方向,向前走50米到C處立一根標(biāo)桿,然后方向不變繼續(xù)朝前走50米到D處,在D處轉(zhuǎn)沿DE方向再走17米,到達(dá)E處,此時A、C、E三點在同一直線上,那么A、B兩點間的距離為  

A. 10 B. 12 C. 15 D. 17

【答案】D

【解析】

根據(jù)已知條件求證ABC≌△EDC,利用其對應(yīng)邊相等的性質(zhì)即可求得AB

∵先從B處出發(fā)與AB90°角方向,
∴∠ABC=90°,
BC=50mCD=50m,∠EDC=90°,∠ACB=∠ECD,
∴△ABC≌△EDC,
AB=DE
∵沿DE方向再走17米,到達(dá)E處,即DE=17
AB=17
故答案為:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( )

A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CDBDE、F、O,連接DE、BF

1)求證:四邊形BEDF是菱形;

2)若AB8cm,BC4cm,求四邊形DEBF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,AB=AC,其周長為20cm,則AB邊的取值范圍是( )
A.1cm<AB<4cm
B.5cm<AB<10cm
C.4cm<AB<8cm
D.4cm<AB<10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90。 , 0B=2OA,點A在反比例函數(shù) 的圖象上,點B在反比例函數(shù) 的圖象上,則k的值是( )

A.-4
B.4
C.-2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2為對角線作第一個正方形A1B1C1B2,以B2B3為對角線作第二個正方形A2B2C2B3,以B3B4為對角線作第三個正方形A3B3C3B4,…,如果所作正方形的對角線BnBn+1都在y軸上,且BnBn+1的長度依次增加1個單位,頂點An都在第一象限內(nèi)(n≥1,且n為整數(shù)). 那么A1的坐標(biāo)為____________;An的坐標(biāo)為_________(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A,C在x軸上,點B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B,D.

(1)求點A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=70°,∠AOD=AOC,∠BOD=3BOC(∠BOC45°),則∠BOC的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機(jī)會均等.

(1)現(xiàn)隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向2的概率為;
(2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
游戲規(guī)則:隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤兩次,停止后,指針各指向一個數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.

查看答案和解析>>

同步練習(xí)冊答案