【題目】如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A,C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B,D.
(1)求點A的坐標(用m表示);
(2)求拋物線的解析式;
(3)設點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.
【答案】
(1)解:由B(3,m)可知OC=3,BC=m,又△ABC為等腰直角三角形,
∴AC=BC=m,OA=m﹣3,
∴點A的坐標是(3﹣m,0)
(2)解:∵∠ODA=∠OAD=45°
∴OD=OA=m﹣3,
則點D的坐標是(0,m﹣3).
又拋物線頂點為P(1,0),且過點B、D,
所以可設拋物線的解析式為:y=a(x﹣1)2,
得:
解得
∴拋物線的解析式為y=x2﹣2x+1
(3)解:方法一:
證明:過點Q作QM⊥AC于點M,過點Q作QN⊥BC于點N,
設點Q的坐標是(x,x2﹣2x+1),
則QM=CN=(x﹣1)2,MC=QN=3﹣x.
∵QM∥CE
∴△PQM∽△PEC
∴
即 ,得EC=2(x﹣1)
∵QN∥FC
∴△BQN∽△BFC
∴
即 ,得
又∵AC=4
∴FC(AC+EC)= [4+2(x﹣1)]= (2x+2)= ×2×(x+1)=8
即FC(AC+EC)為定值8.
方法二:
設Q(t,t2﹣2t+1),B(3,4),
設直線BQ:y=kx+b,
∴l(xiāng)BQ:y=(t+1)x+1﹣3t,
把y=0代入y=(t+1)x+1﹣3t,
∴x= ,即F( ,0),
∵P(1,0),Q(t,t2﹣2t+1),
∴l(xiāng)PQ:y=(t﹣1)x+1﹣t,
把x=3代入,∴y=2t﹣2,即E(3,2t﹣2),
∴FC(AC+EC)=(CX﹣FX)(CX﹣AX+EY﹣CY)=(3﹣ )(4+2t﹣2)=8.
【解析】(1)求A點坐標可先求OA,利用線段之差即可求出;(2)先把拋物線解析式設成頂點式,再把B(3,m)、D點坐標(0,m-3)代入即可;(3) 線段的積可利用相似的性質對應邊成比例,轉化為其他線段的積.
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要測量河岸相對的兩點A、B之間的距離,先從B處出發(fā)與AB成方向,向前走50米到C處立一根標桿,然后方向不變繼續(xù)朝前走50米到D處,在D處轉沿DE方向再走17米,到達E處,此時A、C、E三點在同一直線上,那么A、B兩點間的距離為
A. 10米 B. 12米 C. 15米 D. 17米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為3的正方形ABCD中,點E、F、G、H分別在AB、BC、CD、DA邊上,且滿足EB=FC=GD=HA=1,BD分別與HG、HF、EF相交于M、O、N.給出以下結論,
①HO=OF ②0F2=ON·OB③HM=2MG ④S△HOM= ,其中正確的個數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)如果和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB表示一條對折的繩子,現(xiàn)從P點將繩子剪斷.剪斷后的各段繩子中最長的一段為30cm.若AP=BP,則原來繩長為( 。cm.
A. 55cmB. 75cmC. 55或75cmD. 50或75cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應建在距A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期三個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調查中,張老師一共調查了 名同學,其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com