【題目】兩地相距千米,甲、乙兩人都從地去地,圖中和分別表示甲、乙兩人所走路程(千米)與時(shí)間(小時(shí))之間的關(guān)系.對(duì)于下列說(shuō)法:①乙晚出發(fā)小時(shí);②乙出發(fā)小時(shí)后追上甲;③甲的速度是千米/小時(shí);④乙先到達(dá)地,其中正確的個(gè)數(shù)是( )
A.個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
直接根據(jù)函數(shù)圖象即可判斷①②;根據(jù)速度,路程,時(shí)間三者之間的關(guān)系即可判斷③④;進(jìn)而可得答案.
解:由函數(shù)圖象可知,乙比甲晚出發(fā)1小時(shí),故①正確;
乙出發(fā)3﹣1=2小時(shí)后追上甲,故②錯(cuò)誤;
甲的速度為:18÷3=6(千米/小時(shí)),故③正確;
乙的速度為:18÷(3﹣1)=9(千米/小時(shí)),
則甲到達(dá)B地用的時(shí)間為:20÷6=(小時(shí)),乙到達(dá)B地用的時(shí)間為:20÷9=(小時(shí)),
∵1+=,∴乙先到達(dá)B地,故④正確.
∴正確的有3個(gè),故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材母題 點(diǎn)P(x,y)在第一象限,且x+y=8,點(diǎn)A的坐標(biāo)為(6,0).設(shè)△OPA的面積為S.
(1)用含有x的式子表示S,寫出x的取值范圍,畫出函數(shù)S的圖象;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為5時(shí),△OPA的面積為多少?
(3)△OPA的面積能大于24嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見(jiàn)的旱災(zāi),“旱災(zāi)無(wú)情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,BD=3cm,DC=8cm,AD=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BA﹣AC向終點(diǎn)C做勻速運(yùn)動(dòng),點(diǎn)P在線段BA上的運(yùn)動(dòng)速度是5cm/s;在線段AC上的運(yùn)動(dòng)速度是cm/s,當(dāng)點(diǎn)P不與點(diǎn)B、C重合時(shí),過(guò)點(diǎn)P作PQ⊥BC于點(diǎn)Q,將△PBQ繞PQ的中點(diǎn)旋轉(zhuǎn)180°得到△QB′P,設(shè)四邊形PBQB′與△ABD重疊部分圖形的面積為y(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)用含x的代數(shù)式表示線段AP的長(zhǎng).
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)經(jīng)過(guò)點(diǎn)B′和△ADC一個(gè)頂點(diǎn)的直線平分△ADC的面積時(shí),直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),且BE=DF.
(1)求證:AE=CF;
(2)連接AF、CE,判斷四邊形AECF的形狀,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過(guò)點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過(guò)點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸相交于點(diǎn)A,與軸相交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△AOB的面積;
(3)若點(diǎn)P是軸上的一個(gè)動(dòng)點(diǎn),且△PAB是等腰三角形,則P點(diǎn)的坐標(biāo)為_(kāi)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=ax與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)求上述兩函數(shù)的表達(dá)式;
(2)M(m,n)是反比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A點(diǎn)作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.若s四邊形OADM=6,求點(diǎn)M的坐標(biāo),并判斷線段BM與DM的大小關(guān)系,說(shuō)明理由;
(3)探索:x軸上是否存在點(diǎn)P.使△OAP是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo); 若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com