【題目】按下面的程序計(jì)算,當(dāng)輸入x=100時(shí),輸出結(jié)果為501;當(dāng)輸入x=20時(shí),輸出結(jié)果為506;如果開始輸入的值x為正數(shù),最后輸出的結(jié)果為656,那么滿足條件的x的值最多有( �。�
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
【答案】B
【解析】
利用逆向思維來做,分析第一個(gè)數(shù)就是直接輸出656,可得方程5x+1=656,解方程即可求得第一個(gè)數(shù),再求得輸出為這個(gè)數(shù)的第二個(gè)數(shù),以此類推即可求得所有答案.
第一個(gè)數(shù)就是直接輸出其結(jié)果時(shí):5x+1=656,
解得:x=131>0,
第二個(gè)數(shù)就是直接輸出其結(jié)果時(shí):5x+1=131
解得:x=26>0;
第三個(gè)數(shù)就是直接輸出其結(jié)果時(shí):5x+1=26,
解得:x=5>0,
第四個(gè)數(shù)就是直接輸出其結(jié)果時(shí):5x+1=5,
解得:x=0.8>0;
第五個(gè)數(shù)就是直接輸出其結(jié)果時(shí):5x+1=0.8,
解得:x=-0.4<0;
故滿足條件所有x的值是131、26、5、0.8.
故答案選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn)A(m,0),B(0,n)(n>m>0),點(diǎn)C在第一象限,AB⊥BC,BC=BA,點(diǎn)P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點(diǎn)M,AB與CP交于點(diǎn)N.
(1)點(diǎn)C的坐標(biāo)為: (用含m,n的式子表示);
(2)求證:BM=BN;
(3)設(shè)點(diǎn)C關(guān)于直線AB的對稱點(diǎn)為D,點(diǎn)C關(guān)于直線AP的對稱點(diǎn)為G,求證:D,G關(guān)于x軸對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2011次運(yùn)動后,動點(diǎn)P的坐標(biāo)是( )
A.(2011,0)
B.(2011,1)
C.(2011,2)
D.(2010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( �。�
①最大的負(fù)整數(shù)是﹣1;②|a|=a;③a+5一定比a大;④38萬用科學(xué)記數(shù)法表示為38×104;⑤單項(xiàng)式﹣ 的系數(shù)是﹣2,次數(shù)是3;⑥﹣<﹣;⑦長方體的截面中,邊數(shù)最多的多邊形是七邊形.
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境:在棱長為1的正方體右側(cè)拼搭若干個(gè)棱長小于或等于1的其它正方體,使拼成的立體圖形為一個(gè)長方體.如圖1,是兩個(gè)棱長為1的正方體搭成的長方體,圖2是從上面看這個(gè)長方體得到的平面圖形,它由兩個(gè)正方形組成.
操作探究:
(1)如圖3是在棱長為1的正方體右側(cè)拼搭了4個(gè)棱長小于1的正方體形成的長方體,請畫出從上面看這個(gè)長方體得到的平面圖形;
(2)已知一個(gè)長方體是按上述方式拼成的,組成它的正方體不超過10個(gè),且若從上面看這個(gè)長方體得到的平面圖形由4個(gè)正方形組成.
請從A,B兩題中任選一題作答,我選擇 題.
A.請畫出從上面看這個(gè)長方體得到的平面圖形.(請畫出所有可能的圖形)
B.請畫出從上面看這個(gè)長方體得到的平面圖形.(請畫出所有可能的圖形,并在所畫圖形的下方直接寫出拼成該長方體所需的正方體的總個(gè)數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個(gè)交點(diǎn)為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC的邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α得到AB′,邊AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC′,α+β=180°.連接B′C′,作△AB′C′的中線AD.
(初步感知)
(1)如圖①,當(dāng)∠BAC=90°,BC=4時(shí),AD的長為______;
(探索證明)
(2)如圖②,△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并證明;
(應(yīng)用延伸)
(3)如圖③,已知等腰△ACB,AC=BC=m,延長AC到D,延長CB到E,使CD=CE=n,將△CED繞C順時(shí)針旋轉(zhuǎn)一周得到△CE′D′,連接BE′、AD′,若∠CBE′=90°,求AD′的長度(用含m、n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com