【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
【答案】(1)證明見解析;(2)28.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)可得AE=CE,DE=EF,可判定四邊形ADCF是平行四邊形,然后證明DF⊥AC,可得四邊形ADCF是菱形;
(2)首先利用勾股定理可得AB長,再根據(jù)中點(diǎn)定義可得AD=5,根據(jù)菱形的性質(zhì)可得AF=FC=AD=5,進(jìn)而可得答案.
試題解析:(1)∵將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,
∴AE=CE,DE=EF,
∴四邊形ADCF是平行四邊形,
∵D、E分別為AB,AC邊上的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,
∵∠ACB=90°,
∴∠AED=90°,
∴DF⊥AC,
∴四邊形ADCF是菱形;
(2)在Rt△ABC中,BC=8,AC=6,
∴AB=10,
∵D是AB邊上的中點(diǎn),
∴AD=5,
∵四邊形ADCF是菱形,
∴AF=FC=AD=5,
∴四邊形ABCF的周長為8+10+5+5=28.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),AC是對角線,過點(diǎn)B作BG∥AC交DA的延長線于點(diǎn)G.
(1)求證:CE∥AF;
(2)若∠G=90°,求證:四邊形CEAF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)動(dòng)時(shí)心跳速率通常和人的年齡有關(guān)。用a表示一個(gè)人的年齡,用b表示正常情況下這個(gè)人在運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù),則.
(1)正常情況下,一個(gè)14歲的少年運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù)是多少?
(2)當(dāng)一個(gè)人的年齡增加10歲時(shí),他運(yùn)動(dòng)時(shí)承受的每分鐘心跳最高次數(shù)有何變化?變化次數(shù)是多少?
(3)一個(gè)45歲的人運(yùn)動(dòng)時(shí),10秒心跳次數(shù)為22次,請問他有危險(xiǎn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下面的程序計(jì)算,當(dāng)輸入x=100時(shí),輸出結(jié)果為501;當(dāng)輸入x=20時(shí),輸出結(jié)果為506;如果開始輸入的值x為正數(shù),最后輸出的結(jié)果為656,那么滿足條件的x的值最多有( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某飛機(jī)場東西方向的地面l上有一長為1km的飛機(jī)跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時(shí)刻測得一架勻速直線降落的飛機(jī)位于點(diǎn)A的北偏西30°,且與點(diǎn)A相距15千米的B處;經(jīng)過1分鐘,又測得該飛機(jī)位于點(diǎn)A的北偏東60°,且與點(diǎn)A相距5 千米的C處.
(1)該飛機(jī)航行的速度是多少千米/小時(shí)?(結(jié)果保留根號)
(2)如果該飛機(jī)不改變航向繼續(xù)航行,那么飛機(jī)能否降落在跑道MN之間?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCO放在直角坐標(biāo)系中,其中頂點(diǎn)B的坐標(biāo)為(10, 8),E是BC邊上一點(diǎn)將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=的圖象與邊AB交于點(diǎn)F, 則線段AF的長為( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐操作:在矩形ABCD中,AB=4,AD=3,現(xiàn)將紙片折疊,點(diǎn)D的對應(yīng)點(diǎn)記為點(diǎn)P,折痕為EF(點(diǎn)E、F是折痕與矩形的邊的交點(diǎn)),再將紙片還原.
初步思考:
(1)若點(diǎn)P落在矩形ABCD的邊AB上(如圖①)
①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),∠DEF= °;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),∠DEF= °;
②當(dāng)點(diǎn)E在AB上,點(diǎn)F在DC上時(shí)(如圖②),
求證:四邊形DEPF為菱形,并直接寫出當(dāng)AP=3.5時(shí)的菱形EPFD的邊長.
深入探究
(2)若點(diǎn)P落在矩形ABCD的內(nèi)部(如圖③),且點(diǎn)E、F分別在AD、DC邊上,請直接寫出AP的最小值 .
拓展延伸
(3)若點(diǎn)F與點(diǎn)C重合,點(diǎn)E在AD上,線段BA與線段FP交于點(diǎn)M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號召,某校開展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com