【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,AC和BD交于點(diǎn)E,AB=BC.
(1)求∠ADB的度數(shù);
(2)過B作AD的平行線,交AC于F,試判斷線段EA,CF,EF之間滿足的等量關(guān)系,并說明理由;
(3)在(2)條件下過E,F分別作AB,BC的垂線,垂足分別為G,H,連接GH,交BO于M,若AG=3,S四邊形AGMO:S四邊形CHMO=8:9,求⊙O的半徑.
【答案】(1)45°;(2)EA2+CF2=EF2,理由見解析;(3)6
【解析】
(1)由直徑所對(duì)的圓周角為直角及等腰三角形的性質(zhì)和互余關(guān)系可得答案;
(2)線段EA,CF,EF之間滿足的等量關(guān)系為:EA2+CF2=EF2.如圖2,設(shè)∠ABE=α,∠CBF=β,先證明α+β=45°,再過B作BN⊥BE,使BN=BE,連接NC,判定△AEB≌△CNB(SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,將相關(guān)線段代入即可得出結(jié)論;
(3)如圖3,延長GE,HF交于K,由(2)知EA2+CF2=EF2,變形推得S△ABC=S矩形BGKH,S△BGM=S四邊形COMH,S△BMH=S四邊形AGMO,結(jié)合已知條件S四邊形AGMO:S四邊形CHMO=8:9,設(shè)BG=9k,BH=8k,則CH=3+k,求得AE的長,用含k的式子表示出CF和EF,將它們代入EA2+CF2=EF2,解得k的值,則可求得答案.
解:(1)如圖1,
∵AC為直徑,
∴∠ABC=90°,
∴∠ACB+∠BAC=90°,
∵AB=BC,
∴∠ACB=∠BAC=45°,
∴∠ADB=∠ACB=45°;
(2)線段EA,CF,EF之間滿足的等量關(guān)系為:EA2+CF2=EF2.理由如下:
如圖2,設(shè)∠ABE=α,∠CBF=β,
∵AD∥BF,
∴∠EBF=∠ADB=45°,
又∠ABC=90°,
∴α+β=45°,
過B作BN⊥BE,使BN=BE,連接NC,
∵AB=CB,∠ABE=∠CBN,BE=BN,
∴△AEB≌△CNB(SAS),
∴AE=CN,∠BCN=∠BAE=45°,
∴∠FCN=90°.
∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,
∴△BFE≌△BFN(SAS),
∴EF=FN,
∵在Rt△NFC中,CF2+CN2=NF2,
∴EA2+CF2=EF2;
(3)如圖3,延長GE,HF交于K,
由(2)知EA2+CF2=EF2,
∴EA2+CF2=EF2,
∴S△AGE+S△CFH=S△EFK,
∴S△AGE+S△CFH+S五邊形BGEFH=S△EFK+S五邊形BGEFH,
即S△ABC=S矩形BGKH,
∴S△ABC=S矩形BGKH,
∴S△GBH=S△ABO=S△CBO,
∴S△BGM=S四邊形COMH,S△BMH=S四邊形AGMO,
∵S四邊形AGMO:S四邊形CHMO=8:9,
∴S△BMH:S△BGM=8:9,
∵BM平分∠GBH,
∴BG:BH=9:8,
設(shè)BG=9k,BH=8k,
∴CH=3+k,
∵AG=3,
∴AE=3,
∴CF=(k+3),EF=(8k﹣3),
∵EA2+CF2=EF2,
∴,
整理得:7k2﹣6k﹣1=0,
解得:k1=﹣(舍去),k2=1.
∴AB=12,
∴AO=AB=6,
∴⊙O的半徑為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場平均每天可多售出5件.
(1)若商場平均每天要盈利1600元,每件襯衫應(yīng)降價(jià)多少元?
(2)若該商場要每天盈利最大,每件襯衫應(yīng)降價(jià)多少元?盈利最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時(shí),函數(shù)有最大值;方程的解是,;,其中結(jié)論錯(cuò)誤的個(gè)數(shù)是
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把圖1稱為一個(gè)基本圖形,顯然這個(gè)基本圖形中有6個(gè)矩形,將此基本圖形不斷復(fù)制并向上平移、疊加,這樣得到圖2,圖3…(如圖所示)
(1)觀察圖形,完成如表:
圖形名稱 | 矩形個(gè)數(shù) |
圖1 | 6 |
圖2 | 18 |
圖3 | 36 |
圖4 | 60 |
圖5 |
|
(2)根據(jù)以上規(guī)律猜想,圖形n中共有多少個(gè)矩形(用含n的代數(shù)式表示)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,點(diǎn)B在反比例函數(shù)y=(x>0)的圖像上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積是6,則k的值為( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與y軸,x軸分別相交于點(diǎn)A、B.點(diǎn)D是x軸上動(dòng)點(diǎn),點(diǎn)D從點(diǎn)B出發(fā)向原點(diǎn)O運(yùn)動(dòng),點(diǎn)E在點(diǎn)D右側(cè),DE=2BD.過點(diǎn)D作DH⊥AB于點(diǎn)H,將△DBH沿直線DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:
(1)求線段BC的長(用含t的代數(shù)式表示);
(2)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分,每小題4分)
袋子中裝有2個(gè)紅球,1個(gè)黃球,它們除顏色外其余都相同。小明和小英做摸球游戲,約定一次游戲規(guī)則是:小英先從袋中任意摸出1個(gè)球記下顏色后放回,小明再從袋中摸出1個(gè)球記下顏色后放回,如果兩人摸到的球的顏色相同,小英贏,否則小明贏.
(1)請(qǐng)用樹狀圖或列表格法表示一次游戲中所有可能出現(xiàn)的結(jié)果;
(2)這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點(diǎn)E.
(1)證明:直線PD是⊙O的切線;
(2)如果∠BED=60°,PD=,求PA的長;
(3)將線段PD以直線AD為對(duì)稱軸作對(duì)稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,則的值為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com