【題目】如圖所示,平行四邊形內(nèi)有兩個全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,則的值為____.
【答案】
【解析】
如解圖所示:延長EN交BC于點F,過點E作EP⊥BC于P,過點F作FQ⊥MN于Q,過點A作AD⊥BC于D,由圖可知,圖中兩個陰影部分面積相等,證出△BEF為等邊三角形,四邊形NFGM為菱形,求出等邊三角形的邊長、菱形的邊長和平行四邊形的邊長,利用銳角三角函數(shù)求出等邊三角形的高、菱形的高和平行四邊形的高,即可求出結(jié)論.
解:如下圖所示,延長EN交BC于點F,過點E作EP⊥BC于P,過點F作FQ⊥MN于Q,過點A作AD⊥BC于D,
∵平行四邊形內(nèi)有兩個全等的正六邊形,設(shè)正六邊形的邊長為a
∴∠AEN=∠A=∠ENM=∠MGC=120°,NM∥BC,AE=EN=NM=MG=a
∴∠B=180°-∠A=60°,∠FNM=180°-∠ENM =60°,∠BEF=180°-∠AEN=60°,∠NFG=∠ENM=120°=∠MGC
∴∠B=∠BEF=60°,∠EFB=180°-∠NFG=60°,NF∥MG,
∴△BEF為等邊三角形,四邊形NFGM為菱形
∴NF=MG=a,
∴BE=BF=EF=EN+NF=2a,AB=AE+BE=3a,BC=BF+FG+GC=4a
∴EP=BE·sin∠B=,AD=AB·sin∠B=,FQ=NF·sin∠FNM=
由圖可知,圖中兩個陰影部分面積相等
∴=2(S△BEF+S菱形NFGM)
=2(BF·EP+NM·FQ)
=2(×2a×+a·)
=
=BC·AD=4a×=
∴
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙,無重疊的四邊形EFGH,設(shè)AB=a,BC=b,若AH=1,則( 。
A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+3x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=4.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.OD交BC于點F,當(dāng)S△COF:S△CDF=4:3時,求點D的坐標(biāo).
(3)如圖2,點E的坐標(biāo)為(0,-2),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,作的角平分線交于點,以為圓心,為半徑作圓.
(1)依據(jù)題意補(bǔ)充完整圖形;(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求證:與直線相切;
(3)在(2)的條件下,若與直線相切的切點為,與相交于點,連接,;其中,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(4,4),B為y軸正半軸上一點,連接AB,在第一象限作AC=AB,∠BAC=90°,過點C作直線CD⊥x軸于D,直線CD與直線y=x交于點E,且ED=5EC,則直線BC解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,(為坐標(biāo)原點,點,點是中點,連接(將繞點順時針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點的對應(yīng)點分別是,連接是中點,連接.
(1)如圖①,當(dāng)時,求點的坐標(biāo);
(2)如圖②,當(dāng)時,求證,且;
(3)當(dāng)旋轉(zhuǎn)至點共線時,求點的坐標(biāo)(直接寫出結(jié)果即可) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)活動小組實地測量某條河流兩岸互相平行的一段東西走向的河的寬度.在河的北岸邊點A處,測得河的南岸邊點B處在其南偏東45°方向,然后向北走40米到達(dá)點C處,測得點B在點C的南偏東27°方向,求這段河的寬度.(結(jié)果精確到1米.參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2,以此類推,得到的矩形A2020OC2020B2020的對角線交點的縱坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,則這時海輪所在的B處距離燈塔P的距離是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com