【題目】如圖,已知拋物線y=x2﹣4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D.
(1)求線段AD的長(zhǎng);
(2)沿直線AD方向平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C',若點(diǎn)C'在反比例函數(shù)(x<0)的圖象上.求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.
【答案】(1);(2)或
【解析】
(1)通過解方程求出點(diǎn)A的坐標(biāo),由此進(jìn)一步求出的值,從而得出D點(diǎn)坐標(biāo),最后根據(jù)勾股定理計(jì)算即可;
(2)設(shè)新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為,根據(jù)題意求出直線CC′的解析式,由此進(jìn)一步求出C′坐標(biāo),據(jù)此再加以計(jì)算求解即可.
(1)由得,,,
∵點(diǎn)A位于點(diǎn)B的左側(cè),
∴A(,0),
∵直線經(jīng)過點(diǎn)A,
∴,
∴m=2,
∴點(diǎn)D的坐標(biāo)為(0,2),
∴AD=;
(2)設(shè)新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為:,
∴C'(m,n),
∵CC′平行于直線AD,且經(jīng)過C(0,4),
∴直線CC′的解析式為:,
∵點(diǎn)C'在反比例函數(shù)()的圖象上,
∴,
∴,
解得:或,
∴新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為或,
∴新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的圖象與軸分別交于點(diǎn)、,且過點(diǎn).
(1)求二次函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線上第一象限內(nèi)的點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)在拋物線上(下方)是否存在點(diǎn),使?若存在,求出點(diǎn)到軸的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長(zhǎng);
(2)求完成這項(xiàng)工程需要土石多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE交于點(diǎn)F.
(1)求證:CF為⊙O的切線;
(2)填空:
①若AB=4,當(dāng)OB=BF時(shí),BE=______;
②當(dāng)∠CAB的度數(shù)為______時(shí),四邊形ACFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,函數(shù)值y隨自變量x增大而減小的是( 。
A.y=2xB.
C.D.y=﹣x2+2x﹣1(x>1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:過直線外一點(diǎn)作已知直線的平行線.
已知:直線l及其外一點(diǎn)A.
求作:l的平行線,使它經(jīng)過點(diǎn)A.
小云的作法如下:
(1)在直線l上任取一點(diǎn)B;
(2)以B為圓心,BA長(zhǎng)為半徑作弧,交直線l于點(diǎn)C;
(3)分別以A、C為圓心,BA長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)D;
(4)作直線AD.直線AD即為所求.
小云作圖的依據(jù)是_______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,.. 將繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°到點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接,,.
(1)依題意補(bǔ)全圖形:
(2)判斷的形狀,并證明你的結(jié)論;
(3)請(qǐng)問在直線上是否存在點(diǎn).使得恒成立若存在,請(qǐng)用文字描述出點(diǎn)的準(zhǔn)確位置,并畫圖證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線yx m交 y軸的正半軸于點(diǎn)A,交x軸的正半軸于點(diǎn)B,過點(diǎn)A的直線AF交x軸的負(fù)半軸于點(diǎn)F,∠AFO=45°.
(1)求∠FAB的度數(shù);
(2)點(diǎn) P是線段OB上一點(diǎn),過點(diǎn)P作 PQ⊥OB交直線 FA于點(diǎn)Q,連接 BQ,取 BQ的中點(diǎn)C,連接AP、AC、CP,過點(diǎn)C作 CR⊥AP于點(diǎn)R,設(shè) BQ的長(zhǎng)為d,CR的長(zhǎng)為h,求d與 h的函數(shù)關(guān)系式(不要求寫出自變量h的取值范圍);
(3)在(2)的條件下,過點(diǎn) C 作 CE⊥OB于點(diǎn)E,CE交 AB于點(diǎn)D,連接 AE,∠AEC=2∠DAP,EP=2,作線段 CD 關(guān)于直線AB的對(duì)稱線段DS,求直線PS與直線 AF的交點(diǎn)K的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com