【題目】如圖,在菱形ABCD中,點E在邊CD上,連結(jié)AE并延長與BC的延長線交于點F.
(1)寫出圖中所有的相似三角形(不需證明);
(2)若菱形ABCD的邊長為6,DE:AB=3:5,試求CF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AC、BD相交于點O,能判別這個四邊形是正方形的條件是( )
A.OA =OB =OC=OD,AC⊥BDB.AB∥CD,AC=BD
C.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,M為直線l:x=a上一點,N是直線l外一點,且直線MN與x軸不平行,若MN為某個矩形的對角線,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為直線l的“伴隨矩形”.如圖為直線l的“伴隨矩形”的示意圖.
(1)已知點A在直線l:x=2上,點B的坐標(biāo)為(3,﹣2)
①若點A的縱坐標(biāo)為0,則以AB為對角線的直線l的“伴隨矩形”的面積是 ;
②若以AB為對角線的直線l的“伴隨矩形”是正方形,求直線AB的表達(dá);
(2)點P在直線l:x=m上,且點P的縱坐標(biāo)為4,若在以點(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)為頂點的四邊形上存在一點Q,使得以PQ為對角線的直線l的“伴隨矩形”為正方形,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過坐標(biāo)原點O,與x軸交于另一點A,頂點為B.求:
(1)拋物線的解析式;
(2)△AOB的面積;
(3)要使二次函數(shù)的圖象過點(10,0),應(yīng)把圖象沿x軸向右平移 個單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點A,B,與y軸交于點C.
(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.3
①求點D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點A位于第一象限,點O為坐標(biāo)原點,點B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點C、D,點C為AO的中點,連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標(biāo)有1,2,5,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是AD邊上的一個動點(有與A、D重合),以E為圓心,EA為半徑的⊙E交CE于G點,CF與⊙E切于F點.AD=4,AE=x,CF2=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)是否存在x的值,使得FG把△CEF的面積分成1:2兩部分?若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com