【題目】如圖,四邊形ABCD是正方形,E是AD邊上的一個(gè)動(dòng)點(diǎn)(有與A、D重合),以E為圓心,EA為半徑的⊙E交CE于G點(diǎn),CF與⊙E切于F點(diǎn).AD=4,AE=x,CF2=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)是否存在x的值,使得FG把△CEF的面積分成1:2兩部分?若存在,求出x的值;若不存在,請(qǐng)說明理由.
【答案】(1)y=(4﹣x)2+16﹣x2=32﹣8x(0<x<4);(2)x=,或x=.
【解析】
(1)由已知EF⊥CF,再由正方形的性質(zhì)可得CD=AD=4,∠ADC=90°,根據(jù)勾股定理可求解;
(2)由同底等高類的數(shù)量關(guān)系,可得EG=EC,或EG=EC,可列出方程,即可求解.
解:(1)∵CF與⊙E切于F點(diǎn),
∴EF⊥CF,
∵AE=x,AD=4,
∴DE=4﹣x,
∵四邊形ABCD是正方形,
∴CD=AD=4,∠ADC=90°,
∴CE2=DE2+CD2=(4﹣x)2+16,
在Rt△EFC中,CF2=CE2﹣EF2,
∴y=(4﹣x)2+16﹣x2=32﹣8x(0<x<4);
(2)∵FG把△CEF的面積分成1:2兩部分,
∴EG=EC,或EG=EC,
∴x= ,或x=
∴x=±,或x=
∵0<x<4,
∴x=,或x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E在邊CD上,連結(jié)AE并延長(zhǎng)與BC的延長(zhǎng)線交于點(diǎn)F.
(1)寫出圖中所有的相似三角形(不需證明);
(2)若菱形ABCD的邊長(zhǎng)為6,DE:AB=3:5,試求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】往水平放置的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示.若油面寬AB和油的最大深度都為80cm.
(1)求油槽的半徑OA;
(2)從油槽中放出一部分油,當(dāng)剩下的油面寬度為60cm時(shí),求油面下降的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在拋物線上,且拋物線與軸分別交于點(diǎn)和點(diǎn),與軸交于點(diǎn)
(1)求拋物線的解析式.
(2)若點(diǎn)為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求的最小值.
(3)點(diǎn)為拋物線上除點(diǎn)外的一點(diǎn),若與的面積相等,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB是⊙O的直徑,C點(diǎn)在⊙O上,F是AC的中點(diǎn),OF的延長(zhǎng)線交⊙O于點(diǎn)D,點(diǎn)E在AB的延長(zhǎng)線上,∠A=∠BCE.
(1)求證:CE是⊙O的切線;
(2)若BC=BE,判定四邊形OBCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購物備受消費(fèi)者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價(jià)為每條80元時(shí),每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價(jià)措施.據(jù)市場(chǎng)調(diào)查反映:銷售單價(jià)每降1元,則每月可多銷售5條.設(shè)每條褲子的售價(jià)為元(為正整數(shù)),每月的銷售量為條.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)設(shè)該網(wǎng)店每月獲得的利潤(rùn)為元,當(dāng)銷售單價(jià)降低多少元時(shí),每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤(rùn)中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤(rùn)不低于4220元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定休閑褲的銷售單價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M為拋物線第四象限內(nèi)一點(diǎn),連接BC、CM、BM,求當(dāng)△BCM的面積最大時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣8 | ﹣3 | 0 | 1 | 0 | ﹣3 | … |
若A(m,y1),B(m﹣1,y2)兩點(diǎn)都在該函數(shù)的圖象上,當(dāng)m滿足范圍_____時(shí),y1<y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 和直線l:.
(1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);
(2)設(shè)A、B是拋物線與直線的兩個(gè)交點(diǎn),點(diǎn)P是線段AB的中點(diǎn),已知無論a為何值,點(diǎn)P在一條定拋物線上,試求這條定拋物線的解析式;
(3)設(shè)A、B是拋物線與直線的兩個(gè)交點(diǎn),將直線l向下平移7個(gè)單位恰好與拋物線有且只有一個(gè)公共點(diǎn)C,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com