【題目】如圖,△OAB中,∠ABO=90°,點A位于第一象限,點O為坐標原點,點B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點C、D,點C為AO的中點,連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
【答案】C
【解析】
根據(jù)反比例函數(shù)關系式與面積的關系得S△COE=S△BOD=3,由C是OA的中點得S△ACD=S△COD,由CE∥AB,可知△COE∽△AOB,由面積比是相似比的平方得,求出△ABC的面積,從而求出△AOD的面積,得出結論.
解:過C作CE⊥OB于E,
∵點C、D在雙曲線y=(x>0)上,
∴S△COE=S△BOD,
∵S△OBD=3,
∴S△COE=3,
∵CE∥AB,
∴△COE∽△AOB,
∴=,
∵C是OA的中點,
∴OA=2OC,
∴=,
∴S△AOB=4×3=12,
∴S△AOD=S△AOB﹣S△BOD=12﹣3=9,
∵C是OA的中點,
∴S△ACD=S△COD,
∴S△COD=,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】某校為獎勵學習之星,準備在某商店購買A、B兩種文具作為獎品,已知一件A種文具的價格比一件B種文具的價格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.
(1)求一件A種文具的價格;
(2)根據(jù)需要,該校準備在該商店購買A、B兩種文具共150件.
①求購買A、B兩種文具所需經(jīng)費W與購買A種文具的件數(shù)a之間的函數(shù)關系式;
②若購買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計劃經(jīng)費不超過2750元,求有幾種購買方案,并找出經(jīng)費最少的方案,及最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)教研部門對本區(qū)初二年級的學生進行了一次隨機抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學生提問和表達( )
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學生在這五個選項中只能選擇一項.下面是根據(jù)學生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,∠ABC=∠ADC.則下列結論:①BC∥AD;②∠EAC+∠HCF=180°;③若AD平分∠EAC,則CF平分∠HCG;④S四邊形ABCD=2S△ABC,其中正確結論的序號是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時時間,在每條線路上隨機選取了450個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:早高峰期間,乘坐______(填“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時不超過50分鐘”的可能性最大.
用時 | 合計(頻次) | |||
線路 | ||||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x-2)2-9經(jīng)過點P(6,7),與x軸交于A、B兩點,與y軸交于點C,直線AP與y軸交于點D,拋物線對稱軸與x軸交于點E.
(1)求拋物線的解析式;
(2)過點E任作一條直線l(點B、C分別位于直線l的異側),設點C到直線的距離為m,點B到直線l的距離為n,求m+n的最大值;
(3)y軸上是否存在點Q,使∠QPD=∠DEO,若存在,請求出點Q的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,位于第二象限的點在反比例函數(shù)的圖像上,點與點關于原點對稱,直線經(jīng)過點,且與反比例函數(shù)的圖像交于點.
(1)當點的橫坐標是-2,點坐標是時,分別求出的函數(shù)表達式;
(2)若點的橫坐標是點的橫坐標的4倍,且的面積是16,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com