如圖,某中學(xué)校園有一塊長(zhǎng)為35m,寬為16m的長(zhǎng)方形空地,其中有一面已經(jīng)鋪設(shè)長(zhǎng)為26m的籬笆圍墻,學(xué)校設(shè)計(jì)在這片空地上,利用這面圍墻和用盡已有的可制作50m長(zhǎng)的籬笆材料,圍成一個(gè)矩形花園或圍成一個(gè)半圓花園,請(qǐng)回答以下問題:

(1)能否圍成面積為300m2的矩形花園?若能,請(qǐng)寫出其中一種設(shè)計(jì)方案,若不能,請(qǐng)說明理由.
(2)若圍成一個(gè)半圓花園,則該如何設(shè)計(jì)?請(qǐng)寫出你的設(shè)計(jì)方案.(π取3.14)
(3)圍成的各種設(shè)計(jì)中,最大面積是多少?

(1)能,設(shè)計(jì)方案見解析;(2)設(shè)計(jì)方案見解析;(3)343.43m2.

解析試題分析:(1)首先表示出矩形的長(zhǎng)與寬,利用矩形面積得出等式,進(jìn)而解方程得出;
(2)利用已知得出設(shè)新增加am,則半圓弧長(zhǎng)為:,進(jìn)而得出a的值,即可得出答案;
(3)利用二次函數(shù)最值求法得出矩形最值再利用半圓面積公式得出半圓面積,進(jìn)而比較即可.
試題解析:(1)設(shè)垂直于已經(jīng)鋪設(shè)長(zhǎng)為26m的籬笆圍墻的一邊為xm,則平行于原籬笆的長(zhǎng)為(50-2x)m,
根據(jù)題意得出:x(50-2x)=300,
解得:x1=10,x2=15,
當(dāng)x=10,則50-20=30>26,故不合題意舍去,
∴能圍成面積為300m2的矩形花園,此時(shí)長(zhǎng)為20m,寬為15m;
(2)∵當(dāng)r=13時(shí),∴l(xiāng)半圓=πr=3.14×13=40.82<50,
∴半圓的直徑應(yīng)大于26m,設(shè)新增加am,則半圓弧長(zhǎng)為:,
∴a+=50,
解得:a≈3.57,
∴半圓直徑為:26+3.57=29.57(m),
∴半圓的半徑為:14.79m;
(3)S1=x(50-2x)=-2x2+50x,
當(dāng)x=12.5時(shí),S最大==312.5(m2),
S半圓=π×14.792≈343.43(m2),
∴圍成的各種設(shè)計(jì)中,最大面積是半圓面積為343.43m2
考點(diǎn): 1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,矩形OABC過原點(diǎn)O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點(diǎn)D.
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)如圖,點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為秒.

①當(dāng)t為何值時(shí),△OPQ的面積等于1;
②當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=-(x-t)2+t(t>0).問是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線分別與y軸、x軸相交于A、B兩點(diǎn),與二次函數(shù)的圖像交于A、C兩點(diǎn).

(1)當(dāng)點(diǎn)C坐標(biāo)為(,)時(shí),求直線AB的解析式;
(2)在(1)中,如圖,將△ABO沿y軸翻折180°,若點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在二次函數(shù)的圖像上,求點(diǎn)D到直線AB的距離;
(3)當(dāng)-1≤x≤1時(shí),二次函數(shù)有最小值-3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線(m是常數(shù),)與x軸有兩個(gè)不同的交點(diǎn)A、B,點(diǎn)A、點(diǎn)B關(guān)于直線x=1對(duì)稱,拋物線的頂點(diǎn)為C.
(1)此拋物線的解析式;
(2)求點(diǎn)A、B、C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,4),D為OC的中點(diǎn).

(1)求m的值;
(2)拋物線的對(duì)稱軸與 x軸交于點(diǎn)E,在直線AD上是否存在點(diǎn)F,使得以點(diǎn)A、B、F為頂點(diǎn)的三角形與△ADE 相似?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)G,使△GBC中BC邊上的高為?若存在,求出點(diǎn)G的坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商人如果將進(jìn)貨價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價(jià),減少進(jìn)貨量的辦法增加利潤(rùn),已知這種商品每漲價(jià)1元其銷售量就要減少10件,問他將售出價(jià)定為多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)的圖象與x軸交于點(diǎn)A(-1, 0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在原點(diǎn)處,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點(diǎn)F.

(1)若拋物線過點(diǎn)A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點(diǎn)M是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),點(diǎn)M在何處時(shí)△AMC的面積最大?最大面積是多少?求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知:為邊長(zhǎng)是的等邊三角形,四邊形為邊長(zhǎng)是6的正方形. 現(xiàn)將等邊和正方形按如圖①的方式擺放,使點(diǎn)與點(diǎn)重合,點(diǎn)、在同一條直線上,從圖①的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)暫停運(yùn)動(dòng),設(shè)的運(yùn)動(dòng)時(shí)間為秒().

(1)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊和正方形重疊部分的面積為,請(qǐng)直接寫出之間的函數(shù)關(guān)系式;
(2)如圖②,當(dāng)點(diǎn)與點(diǎn)重合時(shí),作的角平分線于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,得到. 在線段上是否存在點(diǎn),使得為等腰三角形. 如果存在,求線段的長(zhǎng)度;若不存在,請(qǐng)說明理由.
(3)如圖③,若四邊形為邊長(zhǎng)是的正方形,的移動(dòng)速度為每秒 個(gè)單位長(zhǎng)度,其余條件保持不變. 開始移動(dòng)的同時(shí),點(diǎn)從點(diǎn)開始,沿折線以每秒個(gè)單位長(zhǎng)度開始移動(dòng),停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng). 設(shè)在運(yùn)動(dòng)過程中,交折線點(diǎn),則當(dāng)時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案