【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(13世紀)所著的《詳解九章算術(shù)》一書中,用如下的三角形解釋(a+b)n的展開式中各項的系數(shù),此三角形稱為“楊輝三角”,

即:(a+b)1=a+b

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

根據(jù)“楊輝三角”計算出(a+b)10的展開式中第三項的系數(shù)為(  )

A.10B.45C.46D.50

【答案】B

【解析】

根據(jù)題意先得出的第三項的系數(shù),觀察這些系數(shù)的特點,由此進一步歸納總結(jié)出的第三項系數(shù)為,據(jù)此進一步得出答案即可.

由題意得:

的第三項的系數(shù)為:,

的第三項的系數(shù)為:,

的第三項的系數(shù)為:,

的第三項的系數(shù)為:,

的第三項系數(shù)為:,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+2k=0有兩個實數(shù)根x1 , x2
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k,使得x1·x2-x12-x22≥0成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=110°,則∠B的度數(shù)是( )

A.110°
B.70°
C.60°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的表格是某次籃球聯(lián)賽部分球隊的積分表,則下列說法不正確的是( 。

隊名

比賽場數(shù)

勝場

負場

積分

前進

14

10

4

24

光明

14

9

5

23

遠大

14

7

a

21

衛(wèi)星

14

4

10

b

鋼鐵

14

0

14

14

A.負一場積1分,勝一場積2B.衛(wèi)星隊總積分b=18

C.遠大隊負場數(shù)a=7D.某隊的勝場總積分可以等于它的負場總積分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,數(shù)軸上的點A,BC依次表示數(shù)-2,x,4.某同學(xué)將刻度尺如圖2放置,使刻度尺上的數(shù)字0對齊數(shù)軸上的點B,發(fā)現(xiàn)點A對齊刻度1.8cm,點C對齊刻度5.4cm

1AC=    個單位長度;由圖可知數(shù)軸上的一個單位長度對應(yīng)刻度尺上的    cm;數(shù)軸上的點B表示數(shù)    ;

2)已知T是數(shù)軸上一點(不與點A、點B、點C重合),點P表示的數(shù)是t,點P是線段BT的三等分點,且TP=2BP

如圖3,當(dāng)-2t4時,試試猜想線段CTAP的數(shù)量關(guān)系,并說明理由;

|2BT3AP|=1,請直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的平分線與AB的垂直平分線交于點O,將沿EF折疊,若點C與點O恰好重合,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,購買一種蘋果,所付款金額y(元)與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購買5千克這種蘋果比分五次購買1千克這種蘋果可節(jié)。 )元.

A.6
B.8
C.9
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點B、C重合),△ADE是以AD為邊的等邊三角形,過點EBC的平行線,分別交射線AB、AC于點F、G,連接BE

1)如圖(a)所示,當(dāng)點D在線段BC上時.

①求證:△AEB≌△ADC

②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;

2)如圖(b)所示,當(dāng)點DBC的延長線上時,直接寫出(1)中的兩個結(jié)論是否成立;

3)在(2)的情況下,當(dāng)點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南京某中學(xué)為了迎接世乒賽,在九年級舉行了乒乓球知識競賽,從全年級600名學(xué)生的成績中隨機抽選了100名學(xué)生的成績,根據(jù)測試成績繪制成以下不完整的頻數(shù)分布表和頻數(shù)分布直方圖:

請結(jié)合圖表完成下列各題:

1)求表中a的值:

2)請把頻數(shù)分布直方圖補充完整:

3)若測試成績不低于90分的同學(xué)可以獲得世乒賽吉祥物乒寶,請你估計該校九年級有多少位同學(xué)可以獲得乒寶

查看答案和解析>>

同步練習(xí)冊答案